Adaptation and Convergent Evolution within the Jamesonia-Eriosorus Complex in High-Elevation Biodiverse Andean Hotspots
نویسندگان
چکیده
The recent uplift of the tropical Andes (since the late Pliocene or early Pleistocene) provided extensive ecological opportunity for evolutionary radiations. We test for phylogenetic and morphological evidence of adaptive radiation and convergent evolution to novel habitats (exposed, high-altitude páramo habitats) in the Andean fern genera Jamesonia and Eriosorus. We construct time-calibrated phylogenies for the Jamesonia-Eriosorus clade. We then use recent phylogenetic comparative methods to test for evolutionary transitions among habitats, associations between habitat and leaf morphology, and ecologically driven variation in the rate of morphological evolution. Páramo species (Jamesonia) display morphological adaptations consistent with convergent evolution in response to the demands of a highly exposed environment but these adaptations are associated with microhabitat use rather than the páramo per se. Species that are associated with exposed microhabitats (including Jamesonia and Eriorsorus) are characterized by many but short pinnae per frond whereas species occupying sheltered microhabitats (primarily Eriosorus) have few but long pinnae per frond. Pinnae length declines more rapidly with altitude in sheltered species. Rates of speciation are significantly higher among páramo than non-páramo lineages supporting the hypothesis of adaptation and divergence in the unique Páramo biodiversity hotspot.
منابع مشابه
Tryonia, a new taenitidoid fern genus segregated from Jamesonia and Eriosorus (Pteridaceae)
The Neotropical fern genera Eriosorus and Jamesonia have long been thought of as close relatives. Molecular phylogenetic studies have confirmed this notion but have also revealed that neither genus is monophyletic with respect to the other. As a result, all known species of Eriosorus were recently subsumed under the older generic name Jamesonia. Here, through an analysis of a four-gene plastid ...
متن کاملPhylogeny of Chaetanthera (Asteraceae: Mutisieae) reveals both ancient and recent origins of the high elevation lineages.
Penalized likelihood analysis of previously published chloroplast DNA (cpDNA) ndhF sequences suggests that the central-southern Andean genus Chaetanthera diverged ca. 16.5 million years (my) ago, well before the uplift of the Andes to their present heights. Penalized likelihood analysis based on new nuclear ribosomal DNA (rDNA) internal transcribed spacer (ITS) sequences indicates that the most...
متن کاملWidespread signals of convergent adaptation to high altitude in Asia and america.
Living at high altitude is one of the most difficult challenges that humans had to cope with during their evolution. Whereas several genomic studies have revealed some of the genetic bases of adaptations in Tibetan, Andean, and Ethiopian populations, relatively little evidence of convergent evolution to altitude in different continents has accumulated. This lack of evidence can be due to truly ...
متن کاملGenetic Signatures Reveal High-Altitude Adaptation in a Set of Ethiopian Populations
The Tibetan and Andean Plateaus and Ethiopian highlands are the largest regions to have long-term high-altitude residents. Such populations are exposed to lower barometric pressures and hence atmospheric partial pressures of oxygen. Such "hypobaric hypoxia" may limit physical functional capacity, reproductive health, and even survival. As such, selection of genetic variants advantageous to hypo...
متن کاملPhylogenetic insights into Andean plant diversification
*Correspondence: Federico Luebert, Nees-Institut für Biodiversität der Pflanzen, Universität Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany e-mail: [email protected] Andean orogeny is considered as one of the most important events for the development of current plant diversity in South America. We compare available phylogenetic studies and divergence time estimates for plant lineages that...
متن کامل