Linear programming with interval right hand sides

نویسندگان

  • Virginie Gabrel
  • Cécile Murat
  • Nabila Remli
چکیده

In this paper, we study general linear programs in which right handsides are interval numbers. This model is relevant when uncertain and inaccurate factors make di–cult the assignment of a single value to each right handside. When objective function coe–cients are interval numbers in a linear program, it is used to determine optimal solutions according to classical criteria coming from decision theory (like the worst case criterion). When the feasible solutions set is uncertain, another approach consists in determining the worst and best optimum solutions. We study the complexity of these two optimization problems when each right handside is an interval number. Moreover, we analysis the relationship between these two problems and the classical approach coming from decision theory. We exhibit some duality relation between the worst optimum solution problem and the best optimum solution problem in the dual. This study highlights some duality property in robustness analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach for Solving Interval Quadratic Programming Problem

This paper discusses an Interval Quadratic Programming (IQP) problem, where the constraints coefficients and the right-hand sides are represented by interval data. First, the focus is on a common method for solving Interval Linear Programming problem. Then the idea is extended to the IQP problem. Based on this method each IQP problem is reduced to two classical Quadratic Programming (QP) proble...

متن کامل

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

A Suggested Approach for Stochastic Interval-Valued Linear Fractional Programming problem

In this paper, we considered a Stochastic Interval-Valued Linear Fractional Programming problem(SIVLFP). In this problem, the coefficients and scalars in the objective function are fractional-interval, and technological coefficients and the quantities on the right side of the constraints were random variables with the specific distribution. Here we changed a Stochastic Interval-Valued Fractiona...

متن کامل

A Gaussian upper bound for Gaussian multi-stage stochastic linear programs

This paper deals with two-stage and multi-stage stochastic programs in which the right-hand sides of the constraints are Gaussian random variables. Such problems are of interest since the use of Gaussian estimators of random variables is widespread. We introduce algorithms to nd upper bounds on the optimal value of two-stage and multi-stage stochastic (minimization) programs with Gaussian right...

متن کامل

SENSITIVITY ANALYSIS IN LINEAR-PLUS-LINEAR FRACTIONAL PROGRAMMING PROBLEMS

In this paper, we study the classical sensitivity analysis when the right - hand – side vector, and the coefficients of the objective function are allowed to vary. 

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ITOR

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2010