Discontinuous Galerkin Methods for the One-dimensional Vlasov-poisson System

نویسندگان

  • BLANCA AYUSO
  • J. A. CARRILLO
  • C.-W. SHU
چکیده

We construct a new family of semi-discrete numerical schemes for the approximation of the one-dimensional periodic Vlasov-Poisson system. The methods are based on the coupling of discontinuous Galerkin approximation to the Vlasov equation and several finite element (conforming, non-conforming and mixed) approximations for the Poisson problem. We show optimal error estimates for the all proposed methods in the case of smooth compactly supported initial data. The issue of energy conservation is also analyzed for some of the methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Galerkin Methods for the Multi-dimensional Vlasov-poisson Problem

We introduce and analyze two new semi-discrete numerical methods for the multi-dimensional Vlasov-Poisson system. The schemes are constructed by combing a discontinuous Galerkin approximation to the Vlasov equation together with a mixed finite element method for the Poisson problem. We show optimal error estimates in the case of smooth compactly supported initial data. We propose a scheme that ...

متن کامل

Convergence analysis for Backward-Euler and mixed discontinuous Galerkin methods for the Vlasov-Poisson system

We construct and analyze a numerical scheme for the two-dimensional Vlasov-Poisson system based on a backward-Euler (BE) approximation in time combined with a mixed finite element method for a discretization of the Poisson equation in the spatial domain and a discontinuous Galerkin (DG) finite element approximation in the phase-space variables for the Vlasov equation. We prove the stability est...

متن کامل

Study of conservation and recurrence of Runge-Kutta discontinuous Galerkin schemes for Vlasov-Poisson systems

In this paper we consider Runge-Kutta discontinuous Galerkin (RKDG) schemes for Vlasov-Poisson systems that model collisionless plasmas. One-dimensional systems are emphasized. The RKDG method, originally devised to solve conservation laws, is seen to have excellent conservation properties, be readily designed for arbitrary order of accuracy, and capable of being used with a positivity-preservi...

متن کامل

On Runge-Kutta discontinuous Galerkin schemes for Vlasov-Poisson systems

In this paper we consider Runge-Kutta discontinuous Galerkin (RKDG) schemes for Vlasov-Poisson systems that model collisionless plasmas. One-dimensional systems are emphasized. The RKDG method, originally devised to solve conservation laws, is seen to have excellent conservation properties, be readily designed for arbitrary order of accuracy, and capable of being used with a positivity-preservi...

متن کامل

Streamline diffusion methods for the Vlasov-Poisson equation

— We prove error estimâtes for the streamline diffusion and the discontinuous Galerkin finite element methods for discretization of the Vlasov-Poisson équation. Résumé. — Nous démontrons des estimations d'erreur pour la méthode de Galerkin discontinue pour la discrétisation de l'équation de Vlasov-Poisson.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009