The Topographic Neural Gas
نویسندگان
چکیده
We have recently investigated a family of algorithms which use the underlying latent space model developed for the Generative Topographic mapping(GTM) but which train the parameters in a different manner. Our first model was the Topographic Product of Experts (ToPoE) which is fast but not so data-driven as our second model, the Harmonic Topographic Mapping (HaToM). However the HaToM is much slower to train than the ToPoE. In this paper we introduce ideas from the Neural Gas algorithm to this underlying model and show that the resulting algorithm has faster convergence while retaining the good quantization properties of the HaToM.
منابع مشابه
Topology-Preserving Mappings for Data Visualisation
We present a family of topology preserving mappings similar to the Self-Organizing Map (SOM) and the Generative Topographic Map (GTM) . These techniques can be considered as a non-linear projection from input or data space to the output or latent space (usually 2D or 3D), plus a clustering technique, that updates the centres. A common frame based on the GTM structure can be used with different ...
متن کاملRelational Topographic Maps
We introduce relational variants of neural topographic maps including the selforganizing map and neural gas, which allow clustering and visualization of data given in terms of a pairwise similarity or dissimilarity matrix. It is assumed that this matrix originates from an euclidean distance or dot product, respectively, however, the underlying embedding of points is unknown. One can equivalentl...
متن کاملPrediction of Corneal Condition After Corneal Ring Implantation in Keratoconus Patients
Background: Keratoconus is a common complication among corneal defects. As a result of expeditious and extensive progress of medical science in recent decades, corneal ring implantation has turned into a successful surgical procedure to correct the vision of Keratoconus patients; however, selecting the right patient is essential in the success of the operation. The prediction of corneal conditi...
متن کاملOnline data visualization using the neural gas network
A high-quality distance preserving output representation is provided to the neural gas (NG) network. The nonlinear mapping is determined concurrently along with the codebook vectors. The adaptation rule for codebook positions in the projection space minimizes a cost function that favors the trustworthy preservation of the local topology. The proposed visualization method, called OVI-NG, is an e...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کامل