Neutron scattering, electron microscopy and dynamic mechanical studies of carbon nanofiber/phenolic resin composites
نویسندگان
چکیده
Carbon nanofiber (CNF)/resole phenolic resin (Hitco 134A) composites exhibited very large increases of bending storage modulus above the glass transition temperature and had higher glass transition temperatures with increasing CNF weight percentage. Small angle neutron scattering (SANS) from dilute suspensions of surface-oxidized CNF in D2O exhibited a Guinier plateau in the q range examined, indicating that isolated scatterers exist. The CNF dispersion, average fiber diameter, average core diameter and polydispersity within the composites and in D2O were quantified by approximating the small angle neutron scattering data with a hollow tube model. The scattering from CNF/phenolic resin composites exhibited a q 4 power law behavior, indicating the presence of sharp interfaces between fibers and phenolic resin. Surface-oxidized (PR-19-PS) CNF nanocomposites exhibited lower surface to volume ratio values and larger shell thickness compared with heat-treated (PR-19-HT) CNF composites. However, carbon nanofibers, with and without oxygenated surface groups, exhibited some agglomerates with fractal dimensions within the phenolic resin composites. Fiber surface treatment with nitric acid appears to promote dispersion and results in looser bundles of nested fiber networks. 2008 Elsevier Ltd. All rights reserved.
منابع مشابه
Carbon Nanofiber Reinforced Carbon/Polymer Composite
Conventional carbon fiber reinforced phenolic resins are widely used to prepare carbon/carbon composites due to their high carbon yield. Property enhancement of carbon fabric/phenolic composites is possible through carbon nanomaterial dispersion in the matrix. The effect of carbon nanofiber dispersion in phenolic resins/carbon fabric composites was investigated. The dispersion efficiency in dif...
متن کاملDynamic Characteristics of Functionalized Carbon Nanotube Reinforced Epoxy Composites: An Experimental Approach
The effects of amine functionalization of carbon nanotubes (CNTs) and CNTs weight percent (wt. %), on the first bending natural frequencies and damping properties of CNT/epoxy composites are investigated in this paper. CNTs and amine functionalized CNTs (AFCNTs), with two different weight percentages, are used to manufacture the beam shaped specimens. Epoxy, CNT/epoxy (0.25 and 0.5 wt. % of CNT...
متن کاملCreep and Dynamic Mechanical Behavior of Natural Fiber/Functionalized Carbon Nanotubes Modified Epoxy Composites
The creep and dynamic mechanical behavior of natural fiber/epoxy composites using functionalized multiwalled carbon nanotubes (MWCNTs) modified matrix were investigated. 0.4 wt% of MWCNTs functionalized with carboxylic acid groups (MWCNTs-COOH) were dispersed in epoxy and three-phase multiscale hybrid composites were processed by hot press. Natural fiber/epoxy two-phase composites without MWCNT...
متن کاملEffect of Hardener on Mechanical Properties of Carbon Fibre Reinforced Phenolic Resin Composites
In this paper the effect of hardener on mechanical properties of carbon reinforced phenolic resin composites is investigated. Carbon fibre is one of the most useful reinforcement materials in composites, its major use being the manufacture of components in the aerospace, automotive, and leisure industries. In this study, carbon fibres are hot pressed with phenolic resin with various percentages...
متن کاملReinforcement mechanisms in MWCNT-filled polycarbonate
The filler/matrix interface in fiber-reinforced polymer composites is critical in controlling load transfer from the matrix to the fiber, failure mechanisms, and degradation. It is not clear, however, how the mechanisms of load transfer in traditional composites apply to nanofiber-filled polymers. This paper is focused on understanding the reinforcement mechanisms in multiwalled carbon nanotube...
متن کامل