A wavelet packet model of evoked potentials.
نویسندگان
چکیده
The standard methods for decomposition and analysis of evoked potentials are bandpass filtering, identification of peak amplitudes and latencies, and principal component analysis (PCA). We discuss the limitations of these and other approaches and introduce wavelet packet analysis. Then we propose the "single-channel wavelet packet model," a new approach in which a unique decomposition is achieved using prior time-frequency information and differences in the responses of the components to changes in experimental conditions. Orthogonal sets of wavelet packets allow a parsimonious time-frequency representation of the components. The method allows energy in some wavelet packets to be shared among two or more components, so the components are not necessarily orthogonal. The single-channel wavelet packet model and PCA both require constraints to achieve a unique decomposition. In PCA, however, the constraints are defined by mathematical convenience and may be unrealistic. In the single-channel wavelet packet model, the constraints are based on prior scientific knowledge. We give an application of the method to auditory evoked potentials recorded from cats. The good frequency resolution of wavelet packets allows us to separate superimposed components in these data. Our present approach yields estimates of component waveforms and the effects of experiment conditions on the amplitude of the components. We discuss future extensions that will provide confidence intervals and p values, allow for latency changes, and represent multichannel data.
منابع مشابه
Feature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition
Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...
متن کاملMachine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملEvaluation of the Hidden Markov Model for Detection of P300 in EEG Signals
Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool between humans and machines. Most brain-computer interface (BCI) systems use the P300 component, which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for detection of P300. Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...
متن کاملDenoising of ABR Signals using Wavelet Packets
Auditory Brainstem Response (ABR) is an auditory evoked potential extracted from ongoing electrical activity in the brain. ABR is especially used for newbornand children hearing screening, auditory threshold estimation, and brainstem lesion detection in response to stimuli such as click sound, tone burst or chirp. In order to support clinical decision making the analysis of ABR signals must exh...
متن کاملAnalysis Of Brainstem Auditory Evoked Potential Using Discrete Wavelet Transform
Brainstem auditory evoked potentials (BAEP) are electrical potentials recorded in response to an auditory stimulus. Wavelet transform is adopted to extract the characteristic features of BAEP for interpretation and assessment. The results shows that there is significant difference (p<0.05) in the wavelet coefficients features in normal and abnormal BAEPs. Keywords— Brainstem Auditory Evoked pot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain and language
دوره 66 1 شماره
صفحات -
تاریخ انتشار 1999