Antisense Inhibition of hMLH1 Is Not Sufficient for Loss of DNA Mismatch Repair Function in the HCT1161Chromosome 3 Cell Line
نویسندگان
چکیده
We have reported that transfer of chromosome 3 (Chr3) containing a single wild-type copy of the hMLH1 gene into HCT116 colon cancer cells, a cell line deficient in DNA mismatch repair (MMR) activity attributable to inactivating hMLH1 mutations, corrects all of the aspects of the MMR repair-deficient phenotype. We inhibited the expression of the wild-type hMLH1 gene using antisense RNA in HCT1161Chr3 cells to determine if this would result in reversion to the MMR-deficient phenotype. Despite profound inhibition of hMLH1 expression, DNA MMR activity and alkylation sensitivity were not impaired in the antisensetransfected HCT1161Chr3 cells. Additionally, arrest of the cell cycle at the G2 phase with alkylation damage occurs in these cells, a phenotype associated with MMR proficiency. These results indicate that even with a reduction in the expression of hMLH1 protein below the limits of detection by Western blotting, DNA MMR activity remained fully functional (by direct DNA MMR activity assay). We would speculate that hMLH1 is expressed in substantially greater abundance than would be minimally necessary for DNA MMR and that minor reductions in the expression of this protein would not be sufficient to permit DNA MMR dysfunction. Alternatively, Chr3 may contain a second hMLH1 homologue that might overlap with the function of hMLH
منابع مشابه
Advances in Brief Antisense Inhibition of hMLH1 Is Not Sufficient for Loss of DNA Mismatch Repair Function in the HCT1161Chromosome 3 Cell Line
We have reported that transfer of chromosome 3 (Chr3) containing a single wild-type copy of the hMLH1 gene into HCT116 colon cancer cells, a cell line deficient in DNA mismatch repair (MMR) activity attributable to inactivating hMLH1 mutations, corrects all of the aspects of the MMR repair-deficient phenotype. We inhibited the expression of the wild-type hMLH1 gene using antisense RNA in HCT116...
متن کاملAntisense inhibition of hMLH1 is not sufficient for loss of DNA mismatch repair function in the HCT116+chromosome 3 cell line.
We have reported that transfer of chromosome 3 (Chr3) containing a single wild-type copy of the hMLH1 gene into HCT116 colon cancer cells, a cell line deficient in DNA mismatch repair (MMR) activity attributable to inactivating hMLH1 mutations, corrects all of the aspects of the MMR repair-deficient phenotype. We inhibited the expression of the wild-type hMLH1 gene using antisense RNA in HCT116...
متن کاملLoss of DNA mismatch repair in acquired resistance to cisplatin.
Selection of cells for resistance to cisplatin, a well-recognized mutagen, could result in mutations in genes involved in DNA mismatch repair and thereby to resistance to DNA-alkylating agents. Parental cells of the human ovarian adenocarcinoma cell line 2008 expressed hMLH1 when analyzed with immunoblot. One subline selected for resistance to cisplatin (2008/A) expressed no hMLH1, whereas anot...
متن کاملThe role of DNA mismatch repair in platinum drug resistance.
Loss of DNA mismatch repair occurs in many types of tumors. The effect of the loss of DNA mismatch repair activity on sensitivity to cisplatin and a panel of analogues was tested using two pairs of cell lines proficient or deficient in this function. HCT116+ch2, a human colon cancer cell line deficient in hMLH1, was 2.1-fold resistant to cisplatin and 1.3-fold resistant to carboplatin when comp...
متن کاملResistance to cytotoxic drugs in DNA mismatch repair-deficient cells.
Loss of DNA mismatch repair is a common finding in many types of sporadic human cancers as well as in tumors arising in patients with hereditary nonpolyposis colon cancer. The effect of the loss of DNA mismatch repair activity on sensitivity to a panel of commonly used chemotherapeutic agents was tested using one pair of cell lines proficient or deficient in mismatch repair due to loss of hMSH2...
متن کامل