On the complete integrability of the discrete Nahm equations

نویسندگان

  • Michael K. Murray
  • Michael A. Singer
چکیده

The discrete Nahm equations, a system of matrix valued difference equations, arose in the work of Braam and Austin on half-integral mass hyperbolic monopoles. We show that the discrete Nahm equations are completely integrable in a natural sense: to any solution we can associate a spectral curve and a holomorphic linebundle over the spectral curve, such that the discrete-time DN evolution corresponds to walking in the Jacobian of the spectral curve in a straight line through the linebundle with steps of a fixed size. Some of the implications for hyperbolic monopoles are also discussed. AMS Classification scheme numbers 39A12, 58F07

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationships between Darboux Integrability and Limit Cycles for a Class of Able Equations

We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.

متن کامل

Higher-dimensional Generalisations of the Euler Top Equations

Generalisations of the familiar Euler top equations in three dimensions are proposed which admit a sufficiently large number of conservation laws to permit integrability by quadratures. The usual top is a classical analogue of the Nahm equations. One of the examples discussed here is a sevendimensional Euler top, which arises as a classical counterpart to the eight-dimensional self-dual equatio...

متن کامل

How to detect the integrability of discrete systems

Several integrability tests for discrete equations will be reviewed. All tests considered can be applied directly to a given discrete equation and do not rely on the a priori knowledge of the existence of related structures such as Lax pairs. Specifically, singularity confinement, algebraic entropy, Nevanlinna theory, Diophantine integrability and discrete systems over finite fields will be des...

متن کامل

Generating Discrete Trace Transition System of a Polyhe-dral Invariant Hybrid Automaton

Supervisory control and fault diagnosis of hybrid systems need to have complete information about the discrete states transitions of the underling system. From this point of view, the hybrid system should be abstracted to a Discrete Trace Transition System (DTTS) and represented by a discrete mode transition graph. In this paper an effective method is proposed for generating discrete mode trans...

متن کامل

Diophantine Integrability

R.G. Halburd∗ Department of Mathematical Sciences, Loughborough University Loughborough, Leicestershire, LE11 3TU, UK (Dated: January 21, 2005) Abstract The heights of iterates of the discrete Painlevé equations over number fields appear to grow no faster than polynomials while the heights of generic solutions of non-integrable discrete equations grow exponentially. This gives rise to a simple ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008