Independent Component Analysis in a convoluted world
نویسنده
چکیده
This thesis is about convolutive ICA with application to EEG. Two methods for convolutive ICA are proposed. One method, the CICAP algorithm, uses a linear predictor in order to formulate the convolutive ICA problem in two steps: linear deconvolution followed by instantaneous ICA. The other method, the CICAAR algorithm, generalizes Infomax ICA to include the case of convolutive mixing. One advantage to the CICAAR algorithm is that Bayesian model selection is made possible, and in particular, it is possible to select the optimal order of the filters in a convolutive mixing model. A protocol for detecting the optimal dimensions is proposed, and verified in a simulated data set. The role of instantaneous ICA in context of EEG is described in physiological terms, and in particular the nature of dipolar ICA components is described. It is showed that instantaneous ICA components of EEG lacks independence when time lags are taken into consideration. The CICAAR algorithm is shown to be able to remove the delayed temporal dependencies in a subset of ICA components, thus making the components “more independent”. A general recipe for ICA analysis of EEG is proposed: first decompose the data using instantaneous ICA, then select a physiologically interesting subspace, then remove the delayed temporal dependencies among the instantaneous ICA components by using convolutive ICA. By Bayesian model selection, in a real world EEG data set, it is shown that convolutive ICA is a better model for EEG than instantaneous ICA.
منابع مشابه
Efficiency Measurement of Clinical Units Using Integrated Independent Component Analysis-DEA Model under Fuzzy Conditions
Background and Objectives: Evaluating the performance of clinical units is critical for effective management of health settings. Certain assessment of clinical variables for performance analysis is not always possible, calling for use of uncertainty theory. This study aimed to develop and evaluate an integrated independent component analysis-fuzzy-data envelopment analysis approach to accurate ...
متن کاملRank based Least-squares Independent Component Analysis
In this paper, we propose a nonparametric rank-based alternative to the least-squares independent component analysis algorithm developed. The basic idea is to estimate the squared-loss mutual information, which used as the objective function of the algorithm, based on its copula density version. Therefore, no marginal densities have to be estimated. We provide empirical evaluation of th...
متن کاملA Fixed-point Ica Algorithm for Convoluted Speech Signal Separation
This paper describes a fixed-point independent component analysis (ICA) algorithm in combination with the null beamforming technique to sieve out speech signals from their convoluted mixture observed using a linear microphone array. The fixed-point algorithm shows fast convergence to the solution, however it is highly sensitive to the initial value from which iteration starts. A good initial va...
متن کاملStereological Evaluation of Cell Proliferation following Intrarenal Injection of Platelet-rich Plasma in Gentamicin-treated Rats
Background & objectives: Nephrotoxicity is the most important side effect of gentamicin and is a concern in clinical situations. There are no therapeutic tools to prevent or palliate nephrotoxicity. Platelet-rich plasma (PRP) as a source of growth factors can be considered as a therapeutic tool. Therefore, the aim of this study was to investigate the effects of PRP on proliferation of epithel...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کامل