Local differentiation amidst extensive allele sharing in Oryza nivara and O. rufipogon

نویسندگان

  • Maria Celeste N Banaticla-Hilario
  • Ronald G van den Berg
  • Nigel Ruaraidh Sackville Hamilton
  • Kenneth L McNally
چکیده

Genetic variation patterns within and between species may change along geographic gradients and at different spatial scales. This was revealed by microsatellite data at 29 loci obtained from 119 accessions of three Oryza series Sativae species in Asia Pacific: Oryza nivara Sharma and Shastry, O. rufipogon Griff., and O. meridionalis Ng. Genetic similarities between O. nivara and O. rufipogon across their distribution are evident in the clustering and ordination results and in the large proportion of shared alleles between these taxa. However, local-level species separation is recognized by Bayesian clustering and neighbor-joining analyses. At the regional scale, the two species seem more differentiated in South Asia than in Southeast Asia as revealed by F ST analysis. The presence of strong gene flow barriers in smaller spatial units is also suggested in the analysis of molecular variance (AMOVA) results where 64% of the genetic variation is contained among populations (as compared to 26% within populations and 10% among species). Oryza nivara (H E = 0.67) exhibits slightly lower diversity and greater population differentiation than O. rufipogon (H E = 0.70). Bayesian inference identified four, and at a finer structural level eight, genetically distinct population groups that correspond to geographic populations within the three taxa. Oryza meridionalis and the Nepalese O. nivara seemed diverged from all the population groups of the series, whereas the Australasian O. rufipogon appeared distinct from the rest of the species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural variation of rice blast resistance gene Pi-d2.

Studying natural variation in rice resistance genes of cultivated and wild rice relatives can predict resistance stability to rice blast fungus. In the present study, the protein coding regions of the rice R gene Pi-d2 in 35 rice accessions, including Oryza sativa L. subsp. indica Kato (Aus), indica (IND), temperate japonica (TEJ), tropical japonica (TRJ), aromatic (ARO); subgroups of Oryza sat...

متن کامل

Genetic variation in the chloroplast genome suggests multiple domestication of cultivated Asian rice (Oryza sativa L.).

Two hundred and seventy-five accessions of cultivated Asian rice and 44 accessions of AA genome Oryza species were classified into 8 chloroplast (cp) genome types (A-H) based on insertion-deletion events at 3 regions (8K, 57K, and 76K) of the cp genome. The ancestral cp genome type was determined according to the frequency of occurrence in Oryza species and the likely evolution of the variable ...

متن کامل

Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice.

Varying degrees of reduction of genetic diversity in crops relative to their wild progenitors occurred during the process of domestication. Such information, however, has not been available for the Asian cultivated rice (Oryza sativa) despite its importance as a staple food and a model organism. To reveal levels and patterns of nucleotide diversity and to elucidate the genetic relationship and ...

متن کامل

Evolutionary analysis of the Sub1 gene cluster that confers submergence tolerance to domesticated rice.

BACKGROUND AND AIMS Tolerance of complete submergence is recognized in a small number of accessions of domesticated Asian rice (Oryza sativa) and can be conferred by the Sub1A-1 gene of the polygenic Submergence-1 (Sub1) locus. In all O. sativa varieties, the Sub1 locus encodes the ethylene-responsive factor (ERF) genes Sub1B and Sub1C. A third paralogous ERF gene, Sub1A, is limited to a subset...

متن کامل

Evolutionary dynamics of the genomic region around the blast resistance gene Pi-ta in AA genome Oryza species.

The race-specific resistance gene Pi-ta has been effectively used to control blast disease, one of the most destructive plant diseases worldwide. A single amino acid change at the 918 position of the Pi-ta protein was known to determine resistance specificity. To understand the evolutionary dynamics present, we examined sequences of the Pi-ta locus and its flanking regions in 159 accessions com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013