Convergence of trust region augmented Lagrangian methods using variable

نویسنده

  • John E. Renaud
چکیده

To date the primary focus of most constrained approximate optimization strategies is that application of the method should lead to improved designs. Few researchers have focused on the development of constrained approximate optimization strategies that are assured of converging to a Karush-Kuhn-Tucker (KKT) point for the problem. Recent work by the authors based on a trust region model management strategy has shown promise in managing the convergence of constrained approximate optimization in application to a suite of single level optimization test problems. Using a trust-region model management strategy, coupled with an augmented Lagrangian approach for constrained approximate optimization, the authors have shown in application studies that the approximate optimization process converges to a KKT point for the problem. The approximate optimization strategy sequentially builds a cumulative response surface approximation of the augmented Lagrangian which is then optimized subject to a trust region constraint. In this research the authors develop a formal proof of convergence for the response surface approximation based optimization algorithm. Previous application studies were conducted on single level optimization problems for which response surface approximations were developed using conventional statistical response sampling techniques such as central composite design to query a high delity model over the design space. In this research the authors extend the scope of application studies to include the class of multidisciplinary design optimization (MDO) test problems. More importantly the authors show that response surface approximations constructed from variable delity data generated during concurrent subspace optimizations (CSSOs) can be eeectively managed by the trust region model management strategy. Results for two multidisciplinary test problems are presented in which convergence to a KKT point is observed. The formal proof of convergence and the successful MDO application of the algorithm using variable delity data generated by CSSO are original contributions to the growing body of research in MDO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Environmental/Economic Power Dispatch Problem by a Trust Region Based Augmented Lagrangian Method

This paper proposes a Trust-Region Based Augmented Method (TRALM) to solve a combined Environmental and Economic Power Dispatch (EEPD) problem. The EEPD problem is a multi-objective problem with competing and non-commensurable objectives. The TRALM produces a set of non-dominated Pareto optimal solutions for the problem. Fuzzy set theory is employed to extract a compromise non-dominated sol...

متن کامل

TRUST REGION AUGMENTED LAGRANGIAN METHODS FOR SEQUENTIALRESPONSE SURFACE APPROXIMATION AND OPTIMIZATIONJos

A common engineering practice is the use of approximation models in place of expensive computer simulations to drive a multidisciplinary design process based on nonlinear programming techniques. The use of approximation strategies is designed to reduce the number of detailed, costly computer simulations required during optimization while maintaining the pertinent features of the design problem....

متن کامل

Adaptive Augmented Lagrangian Methods for Large-Scale Equality Constrained Optimization

We propose an augmented Lagrangian algorithm for solving large-scale equality constrained optimization problems. The novel feature of the algorithm is an adaptive update for the penalty parameter motivated by recently proposed techniques for exact penalty methods. This adaptive updating scheme greatly improves the overall performance of the algorithm without sacrificing the strengths of the cor...

متن کامل

Decomposition Strategies for Nonconvex Problems, a Parametric Approach

This thesis deals with the development of numerical methods for solving nonconvex optimisation problems by means of decomposition and continuation techniques. We first introduce a novel decomposition algorithm based on alternating gradient projections and augmented Lagrangian relaxations. A proof of local convergence is given under standard assumptions. The effect of different stopping criteria...

متن کامل

An augmented Lagrangian trust region method for equality constrained optimization

In this talk, we present a trust region method for solving equality constrained optimization problems, which is motivated by the famous augmented Lagrangian function. It is different from standard augmented Lagrangian methods where the augmented Lagrangian function is minimized at each iteration. This method, for fixed Lagrange multiplier and penalty parameters, tries to minimize an approximate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007