A single amino acid substitution in the Arabidopsis FIERY1/HOS2 protein confers cold signaling specificity and lithium tolerance.
نویسندگان
چکیده
Low temperature induces the expression of many plant genes through undefined signaling pathways. To gain insight into cold signal transduction mechanisms, we isolated Arabidopsis mutants that exhibited altered regulation of low temperature-induced gene expression. One such mutant, hos2, was shown previously to have an enhanced induction of stress-responsive genes by cold, whereas the expression of these genes under osmotic stress or the phytohormone absciscic acid (ABA) treatments was not affected. Here we further define the targets of HOS2 by examining the regulation of upstream cold-specific CBF transcription factor genes. It was found that the transcript levels of CBF2 and CBF3 were significantly higher in hos2 mutant plants than in the wild type under cold treatments, suggesting that HOS2 may act upstream of CBFs. The HOS2 gene was cloned using a map-based strategy. Surprisingly, HOS2 is identical to the FIERY1 gene that we had described previously. FIERY1 is a general negative regulator that controls cold, osmotic stress, and ABA signal transduction and possesses inositol polyphosphate 1-phosphatase activity. The hos2 mutation rendered the HOS2/FIERY1 recombinant protein completely inactive in the cold but did not substantially affect its activity at warm temperatures. Interestingly, the hos2 mutant protein is extremely tolerant to Li+. This study provides a unique example of a single amino acid substitution in a critical regulator that can lead to conditional changes in protein functions and distinct plant phenotypes. The results reinforce the notion that phosphoinositols are important second messengers in cold signal transduction, and shed light on how the diversity of plant tolerance to cold and other abiotic stresses may evolve due to variations in a common molecular switch.
منابع مشابه
Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress
The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...
متن کاملCold-regulated gene expression and freezing tolerance in an Arabidopsis thaliana mutant.
Low temperature is an important environmental factor influencing plant growth and development. In this study, we report the characterization of a genetic locus, HOS2, which is defined by three Arabidopsis thaliana mutants. The hos2-1, hos2-2 and hos2-3 mutations result in enhanced expression of RD29A and other stress genes under low temperature treatment. Gene expression in response to osmotic ...
متن کاملIsolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress
Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis. In the present study...
متن کاملOverexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance
Receptor-like kinases (RLKs) have been reported to regulate many developmental and defense process, but only a few members have been functionally characterized. In the present study, our observations suggest that one of the RLKs, a membrane-localized cysteine-rich receptor-like protein kinase, CRK5, is involved in abscisic acid (ABA) signaling in Arabidopsis thaliana Overexpression of CRK5 incr...
متن کاملA Nucleotide Metabolite Controls Stress-Responsive Gene Expression and Plant Development
Abiotic stress, such as drought and high salinity, activates a network of signaling cascades that lead to the expression of many stress-responsive genes in plants. The Arabidopsis FIERY1 (FRY1) protein is a negative regulator of stress and abscisic acid (ABA) signaling and exhibits both an inositol polyphosphatase and a 3',5'-bisphosphate nucleotidase activity in vitro. The FRY1 nucleotidase de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 40 4 شماره
صفحات -
تاریخ انتشار 2004