Inference in hybrid Bayesian networks with mixtures of truncated exponentials

نویسندگان

  • Barry R. Cobb
  • Prakash P. Shenoy
چکیده

Mixtures of truncated exponentials (MTE) potentials are an alternative to discretization for solving hybrid Bayesian networks. Any probability density function (PDF) can be approximated with an MTE potential, which can always be marginalized in closed form. This allows propagation to be done exactly using the Shenoy-Shafer architecture for computing marginals, with no restrictions on the construction of a join tree. This paper presents MTE potentials that approximate an arbitrary normal PDF with any mean and a positive variance. The properties of these MTE potentials are presented, along with examples that demonstrate their use in solving hybrid Bayesian networks. Assuming that the joint density exists, MTE potentials can be used for inference in hybrid Bayesian networks that do not fit the restrictive assumptions of the conditional linear Gaussian (CLG) model, such as networks containing discrete nodes with continuous parents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating probability density functions in hybrid Bayesian networks with mixtures of truncated exponentials

Mixtures of truncated exponentials (MTE) potentials are an alternative to discretization and Monte Carlo methods for solving hybrid Bayesian networks. Any probability density function (PDF) can be approximated by an MTE potential, which can always be marginalized in closed form. This allows propagation to be done exactly using the Shenoy-Shafer architecture for computing marginals, with no rest...

متن کامل

Inference in Hybrid Bayesian Networks with Nonlinear Deterministic Conditionals

To enable inference in hybrid Bayesian networks containing nonlinear deterministic conditional distributions using mixtures of polynomials or mixtures of truncated exponentials, Cobb and Shenoy in 2005 propose approximating nonlinear deterministic functions by piecewise linear ones. In this paper, we describe a method for finding piecewise linear approximations of nonlinear functions based on t...

متن کامل

Parameter Estimation in Mixtures of Truncated Exponentials

Bayesian networks with mixtures of truncated exponentials (MTEs) support efficient inference algorithms and provide a flexible way of modeling hybrid domains. On the other hand, estimating an MTE from data has turned out to be a difficult task, and most prevalent learning methods treat parameter estimation as a regression problem. The drawback of this approach is that by not directly attempting...

متن کامل

Hybrid Bayesian Networks with Linear Deterministic Variables

When a hybrid Bayesian network has conditionally deterministic variables with continuous parents, the joint density function for the continuous variables does not exist. Conditional linear Gaussian distributions can handle such cases when the continuous variables have a multi-variate normal distribution and the discrete variables do not have continuous parents. In this paper, operations require...

متن کامل

Mixtures of Polynomials in Hybrid Bayesian Networks with Deterministic Variables

The main goal of this paper is to describe inference in hybrid Bayesian networks (BNs) using mixtures of polynomials (MOP) approximations of probability density functions (PDFs). Hybrid BNs contain a mix of discrete, continuous, and conditionally deterministic random variables. The conditionals for continuous variables are typically described by conditional PDFs. A major hurdle in making infere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2006