A linearization procedure and a VDM/ECM algorithm for penalized and constrained nonparametric maximum likelihood estimation for mixture models

نویسنده

  • Ji-Ping Wang
چکیده

Suppose independent observations Xi , i = 1, . . . , n are observed from a mixture model f (x;Q) ≡ ∫ f (x; ) dQ( ), where is a scalar and Q( ) is a nondegenerate distribution with an unspecified form. We consider to estimate Q( ) by nonparametric maximum likelihood (NPML) method under two scenarios: (1) the likelihood is penalized by a functional g(Q); and (2) Q is under a constraint g(Q) = g0. We propose a simple and reliable algorithm termed VDM/ECM for Q-estimation when the likelihood is penalized by a linear functional. We show this algorithm can be applied to a more general situation where the penalty is not linear, but a function of linear functionals by a linearization procedure. The constrained NPMLE can be found by penalizing the quadratic distance |g(Q)− g0|2 under a large penalty factor > 0 using this algorithm. The algorithm is illustrated with two real data sets. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

Constrained Nonparametric Maximum Likelihood Estimation for Mixture Models

A nonparametric mixture model speciies that observations arise from a mixture distribution , R f(x;) dG(); where the mixing distribution, G; is completely unspeciied. A number of algorithms have been developed to obtain unconstrained maximum likelihood estimates of G (see, for instance, Laird 1978, Bohning 1985, and Lesperance and Kalbbeisch 1992), but none of these algorithms lead to estimates...

متن کامل

Penalized Maximum Likelihood Estimation for Normal Mixture Distributions

Mixture models form the essential basis of data clustering within a statistical framework. Here, the estimation of the parameters of a mixture of Gaussian densities is considered. In this particular context, it is well known that the maximum likelihood approach is statistically ill posed, i.e. the likelihood function is not bounded above, because of singularities at the boundary of the paramete...

متن کامل

A Penalized Nonparametric Maximum Likelihood Approach to Species Richness Estimation

We propose a class of penalized nonparametric maximum likelihood estimators (NPMLEs) for the species richness problem. We use a penalty term on the likelihood because likelihood estimators that lack it have an extreme instability problem. The estimators are constructed using a conditional likelihood that is simpler than the full likelihood. We show that the full-likelihood NPMLE solution given ...

متن کامل

IMPROVING GAUSSIAN MIXTURE DENSITY ESTIMATES 1 Averaging

We apply the idea of averaging ensembles of estimators to probability density estimation. In particular we use Gaussian mixture models which are important components in many neural network applications. One variant of averaging is Breiman's \bagging", which recently produced impressive results in classiication tasks. We investigate the performance of averaging using three data sets. For compari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2007