Symmetry Group Analysis of the Shallow Water and Semi-geostrophic Equations
نویسندگان
چکیده
The two-dimensional shallow water equations and their semi-geostrophic approximation that arise in meteorology and oceanography are analysed from the point of view of symmetry groups theory. A complete classification of their associated classical symmetries, potential symmetries, variational symmetries and conservation laws is found. The semi-geostrophic equations are found to lack conservation of angular momentum. We also show how the particle relabelling symmetry can be used to rewrite the semi-geostrophic equations in such a way that a well-defined formal series solution, smooth only in time, may be carried out. We show that such solutions are in the form of an ‘infinite linear cascade’.
منابع مشابه
A variational approach for the 2-D semi-geostrophic shallow water equations
Existence of weak solutions to the 3-D semi-geostrophic equations with rigid boundaries was proved by Benamou and Brenier [3], using Monge transport theory. This paper extends the results to a free surface boundary condition, which is more physically appropriate. This extension is at present for the 2-D shallow water case only. In addition, we establish stronger time regularity than was possibl...
متن کاملA balanced semi-implicit discretization on icosahedral C-grids for the linear shallow water equations on the sphere
The linear shallow water equations on the sphere are discretized on a quasi-uniform, geodesic, icosahedral Voronoi-Delaunay grid with a C-grid variable arrangement and semi-implicit time discretization. A finite volume discretization is employed for the continuity equation in conservation law form, using as control volumes either the hexagonal/pentagonal or the dual triangular cells. A geostrop...
متن کاملLie symmetry Analysis and Explicit Exact Dolutions of the Time Fractional Drinfeld-Sokolov-Wilson (DSW) System
In this study coupled system of nonlinear time fractional Drinfeld-Sokolov-Wilson equations, which describes the propagation of anomalous shallow water waves is investigated. The Lie symmetry analysis is performed on the model. Employing the suitable similarity transformations, the governing model is similarity reduced to a system of nonlinear ordinary differential equations with Erdelyi-Kober ...
متن کاملThe lattice Boltzmann method as a basis for ocean circulation modeling
We construct a lattice Boltzmann model of a single-layer, ‘‘reduced gravity’’ ocean in a square basin, with shallow water or planetary geostrophic dynamics, and boundary conditions of no slip or no stress.When the volume of the moving upper layer is sufficientlysmall, the motionless lower layer outcrops over a broad area of the northern wind gyre, and the pattern of separated and isolated weste...
متن کاملSemi-geostrophic System with Variable Coriolis Parameter
We prove short time existence and uniqueness of smooth solutions ( in C with k ≥ 2) to the 2-D semi-geostrophic system and semi-geostrophic shallow water system with variable Coriolis parameter f and periodic boundary conditions, under the natural convexity condition on the initial data. The dual space used in analysis of the semi-geostrophic system with constant f does not exist for the variab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005