Markerless multiple-gene-deletion system for Streptococcus mutans.
نویسندگان
چکیده
Inactivation or selective modification is essential to elucidate the putative function of a gene. The present study describes an improved Cre-loxP-based method for markerless multiple gene deletion in Streptococcus mutans, the principal etiological agent of dental caries. This modified method uses two mutant loxP sites, which after recombination creates a double-mutant loxP site that is poorly recognized by Cre recombinase, facilitating multiple gene deletions in a single genetic background. The effectiveness of this modified strategy was demonstrated by the construction of both single and double gene deletions at the htrA and clpP loci on the chromosome of Streptococcus mutans. HtrA and ClpP play key roles in the processing and maturation of several important proteins, including many virulence factors. Deletion of these genes resulted in reducing the organism's ability to withstand exposure to low pH and oxidative agents. The method described here is simple and efficient and can be easily implemented for multiple gene deletions with S. mutans and other streptococci.
منابع مشابه
Cloning-independent and counterselectable markerless mutagenesis system in Streptococcus mutans.
Insertion duplication mutagenesis and allelic replacement mutagenesis are among the most commonly utilized approaches for targeted mutagenesis in bacteria. However, both techniques are limited by a variety of factors that can complicate mutant phenotypic studies. To circumvent these limitations, multiple markerless mutagenesis techniques have been developed that utilize either temperature-sensi...
متن کاملRecombineering in Streptococcus mutans Using Direct Repeat-Mediated Cloning-Independent Markerless Mutagenesis (DR-CIMM)
Studies of the dental caries pathogen Streptococcus mutans have benefitted tremendously from its sophisticated genetic system. As part of our own efforts to further improve upon the S. mutans genetic toolbox, we previously reported the development of the first cloning-independent markerless mutagenesis (CIMM) system for S. mutans and illustrated how this approach could be adapted for use in man...
متن کاملRole of the dpr product in oxygen tolerance in Streptococcus mutans.
We have previously identified and characterized the alkyl hydroperoxide reductase of Streptococcus mutans, which consists of two components, Nox-1 and AhpC. Deletion of both nox-1 and ahpC had no effect on the sensitivity of S. mutans to cumene hydroperoxide or H(2)O(2), implying that the existence of another antioxidant system(s) independent of the Nox-1-AhpC system compensates for the deficie...
متن کاملDevelopment of a Markerless Deletion System for the Fish-Pathogenic Bacterium Flavobacterium psychrophilum
Flavobacterium psychrophilum is a Gram-negative fish pathogen that causes important economic losses in aquaculture worldwide. Although the genome of this bacterium has been determined, the function and relative importance of genes in relation to virulence remain to be established. To investigate their respective contribution to the bacterial pathogenesis, effective tools for gene inactivation a...
متن کامل-Phosphate Phosphatase Activity Is Required for Superoxide Stress Tolerance in Streptococcus mutans
Aerobic microorganisms have evolved different strategies to withstand environmental oxidative stresses generated by various reactive oxygen species (ROS). For the facultative anaerobic human oral pathogen Streptococcus mutans, the mechanisms used to protect against ROS are not fully understood, since it does not possess catalase, an enzyme that degrades hydrogen peroxide. In order to elucidate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 74 7 شماره
صفحات -
تاریخ انتشار 2008