Symmetrization procedures and convexity in centrally symmetric polytopes

نویسنده

  • Allal Guessab
چکیده

Univariate symmetrization technique has many good properties. In this paper, we adopt the high-dimensional viewpoint, and propose a new symmetrization procedure in arbitrary (convex) polytopes of R with central symmetry. Moreover, the obtained results are used to extend to the arbitrary centrally symmetric polytopes the well-known Hermite-Hadamard inequality for convex functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetrization, convexity and applications

Based on permutation enumeration of the symmetric group and ‘generalized’ barycentric coordinates on arbitrary convex polytope, we develop a technique to obtain symmetrization procedures for functions that provide a unified framework to derive new Hermite-Hadamard type inequalities. We also present applications of our results to the Wright-convex functions with special emphasis on their key rol...

متن کامل

Face Numbers of Centrally Symmetric Polytopes Produced from Split Graphs

We analyze a remarkable class of centrally symmetric polytopes, the Hansen polytopes of split graphs. We confirm Kalai’s 3d conjecture for such polytopes (they all have at least 3d nonempty faces) and show that the Hanner polytopes among them (which have exactly 3d nonempty faces) correspond to threshold graphs. Our study produces a new family of Hansen polytopes that have only 3d + 16 nonempty...

متن کامل

A Centrally Symmetric Version of the Cyclic Polytope

We define a centrally symmetric analogue of the cyclic polytope and study its facial structure. We conjecture that our polytopes provide asymptotically the largest number of faces in all dimensions among all centrally symmetric polytopes with n vertices of a given even dimension d = 2k when d is fixed and n grows. For a fixed even dimension d = 2k and an integer 1 ≤ j < k we prove that the maxi...

متن کامل

An Explicit Construction for Neighborly Centrally Symmetric Polytopes

A polytope P ⊂ R is centrally symmetric (cs, for short) if P = −P . A cs polytope P is k-neighborly if every set of k of its vertices, no two of which are antipodes, is the vertex set of a face of P . In their recent paper [7], Linial and Novik give probabilistic constructions for highly neighborly cs polytopes. Namely, based on probabilistic techniques due to Garnaev and Gluskin [4], they cons...

متن کامل

Classification of pseudo-symmetric simplicial reflexive polytopes

Gorenstein toric Fano varieties correspond to so called reflexive polytopes. If such a polytope contains a centrally symmetric pair of facets, we call the polytope, respectively the toric variety, pseudo-symmetric. Here we present a complete classification of pseudo-symmetric simplicial reflexive polytopes. This is a generalization of a result of Ewald on pseudosymmetric nonsingular toric Fano ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 243  شماره 

صفحات  -

تاریخ انتشار 2014