Good Practice in CNN Feature Transfer
نویسندگان
چکیده
The objective of this paper is the effective transfer of the Convolutional Neural Network (CNN) feature in image search and classification. Systematically, we study three facts in CNN transfer. 1) We demonstrate the advantage of using images with a properly large size as input to CNN instead of the conventionally resized one. 2) We benchmark the performance of different CNN layers improved by average/max pooling on the feature maps. Our observation suggests that the Conv5 feature yields very competitive accuracy under such pooling step. 3) We find that the simple combination of pooled features extracted across various CNN layers is effective in collecting evidences from both low and high level descriptors. Following these good practices, we are capable of improving the state of the art on a number of benchmarks to a large margin.
منابع مشابه
Convolutional Neural Network based Age Estimation from Facial Image and Depth Prediction from Single Image
Convolutional neural network (CNN), one of the most commonly used deep learning methods, has been applied to various computer vision and pattern recognition tasks, and has achieved state-of-the-art performance. Most recent research work on CNN focuses on the innovations of the structure. This thesis explores both the innovation of structure and final label encoding of CNN. To evaluate the perfo...
متن کاملGoing Deeper with Convolutional Neural Network for Intelligent Transportation
Over last several decades, computer vision researchers have been devoted to findgood feature to solve different tasks, such as object recognition, object detection,object segmentation, activity recognition and so forth. Ideal features transform rawpixel intensity values to a representation in which these computer vision problemsare easier to solve. Recently, deep features from c...
متن کاملOn-Chip CNN Accelerator for Image Super-Resolution
To implement convolutional neural networks (CNN) in hardware, the state-of-the-art CNN accelerators pipeline computation and data transfer stages using an off-chip memory and simultaneously execute them on the same timeline. However, since a large amount of feature maps generated during the operation should be transmitted to the off-chip memory, the pipeline stage length is determined by the of...
متن کاملOn the Behavior of Convolutional Nets for Feature Extraction
Deep neural networks are representation learning techniques. During training, a deep net is capable of generating a descriptive language of unprecedented size and detail in machine learning. Extracting the descriptive language coded within a trained CNN model (in the case of image data), and reusing it for other purposes is a field of interest, as it provides access to the visual descriptors pr...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1604.00133 شماره
صفحات -
تاریخ انتشار 2016