Conditional gene deletion reveals functional redundancy of GABAB receptors in peripheral nociceptors in vivo
نویسندگان
چکیده
BACKGROUND gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter which mainly mediates its effects on neurons via ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. GABA(B) receptors are widely expressed in the central and the peripheral nervous system. Although there is evidence for a key function of GABA(B) receptors in the modulation of pain, the relative contribution of peripherally- versus centrally-expressed GABA(B) receptors is unclear. RESULTS In order to elucidate the functional relevance of GABA(B) receptors expressed in peripheral nociceptive neurons in pain modulation we generated and analyzed conditional mouse mutants lacking functional GABA(B1) subunit specifically in nociceptors, preserving expression in the spinal cord and brain (SNS-GABA(B1)-/- mice). Lack of the GABA(B1) subunit precludes the assembly of functional GABA(B) receptor. We analyzed SNS-GABA(B1)-/- mice and their control littermates in several models of acute and neuropathic pain. Electrophysiological studies on peripheral afferents revealed higher firing frequencies in SNS-GABA(B1)-/- mice compared to corresponding control littermates. However no differences were seen in basal nociceptive sensitivity between these groups. The development of neuropathic and chronic inflammatory pain was similar across the two genotypes. The duration of nocifensive responses evoked by intraplantar formalin injection was prolonged in the SNS-GABAB(1)-/- animals as compared to their control littermates. Pharmacological experiments revealed that systemic baclofen-induced inhibition of formalin-induced nociceptive behaviors was not dependent upon GABA(B1) expression in nociceptors. CONCLUSION This study addressed contribution of GABA(B) receptors expressed on primary afferent nociceptive fibers to the modulation of pain. We observed that neither the development of acute and chronic pain nor the analgesic effects of a systematically-delivered GABA(B) agonist was significantly changed upon a specific deletion of GABA(B) receptors from peripheral nociceptive neurons in vivo. This lets us conclude that GABA(B) receptors in the peripheral nervous system play a less important role than those in the central nervous system in the regulation of pain.
منابع مشابه
Peripheral calcium-permeable AMPA receptors regulate chronic inflammatory pain in mice.
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type (AMPA-type) glutamate receptors (AMPARs) play an important role in plasticity at central synapses. Although there is anatomical evidence for AMPAR expression in the peripheral nervous system, the functional role of such receptors in vivo is not clear. To address this issue, we generated mice specifically lacking either of the key AMPAR s...
متن کاملGABA suppresses neurogenesis in the adult hippocampus through GABAB receptors.
Adult neurogenesis is tightly regulated through the interaction of neural stem/progenitor cells (NSCs) with their niche. Neurotransmitters, including GABA activation of GABAA receptor ion channels, are important niche signals. We show that adult mouse hippocampal NSCs and their progeny express metabotropic GABAB receptors. Pharmacological inhibition of GABAB receptors stimulated NSC proliferati...
متن کاملP183: Key Function of Complement System in Interactions between Pain and Nociceptors, C5a, and C3a
A part of the immune system that improves (complements) the ability of antibodies and phagocytic cells to clear microorganisms and injured cells from an organism, attacks the pathogen's cell membrane, and encourages inflammation called complement system. It is main part of immune system. Over thirty proteins and protein pieces compose the complement system, including cell membrane receptors, an...
متن کاملGABAB receptors inhibit low-voltage activated and high-voltage activated Ca(2+) channels in sensory neurons via distinct mechanisms.
Growing evidence suggests that mammalian peripheral somatosensory neurons express functional receptors for gamma-aminobutyric acid, GABAA and GABAB. Moreover, local release of GABA by pain-sensing (nociceptive) nerve fibres has also been suggested. Yet, the functional significance of GABA receptor triggering in nociceptive neurons is not fully understood. Here we used patch-clamp recordings fro...
متن کاملGINIP, a Gαi-Interacting Protein, Functions as a Key Modulator of Peripheral GABAB Receptor-Mediated Analgesia
One feature of neuropathic pain is a reduced GABAergic inhibitory function. Nociceptors have been suggested to play a key role in this process. However, the mechanisms behind nociceptor-mediated modulation of GABA signaling remain to be elucidated. Here we describe the identification of GINIP, a Gαi-interacting protein expressed in two distinct subsets of nonpeptidergic nociceptors. GINIP null ...
متن کامل