Differentiation-Dependent Interpentameric Disulfide Bond Stabilizes Native Human Papillomavirus Type 16

نویسندگان

  • Michael J. Conway
  • Linda Cruz
  • Samina Alam
  • Neil D. Christensen
  • Craig Meyers
چکیده

Genetic and biochemical analyses of human papillomavirus type 16 (HPV16) capsids have shown that certain conserved L1 cysteine residues are critical for capsid assembly, integrity, and maturation. Since previous studies utilized HPV capsids produced in monolayer culture-based protein expression systems, the ascribed roles for these cysteine residues were not placed in the temporal context of the natural host environment for HPV, stratifying and differentiating human tissue. Here we extend upon previous observation, that HPV16 capsids mature and become stabilized over time (10-day to 20-day) in a naturally occurring tissue-spanning redox gradient, by identifying temporal roles for individual L1 cysteine residues. Specifically, the C175S substitution severely undermined wild-type titers of the virus within both 10 and 20-day tissue, while C428S, C185S, and C175,185S substitutions severely undermined wild-type titers only within 20-day tissue. All mutations led to 20-day virions that were less stable than wild-type and failed to form L1 multimers via nonreducing SDS-PAGE. Furthermore, Optiprep-fractionated 20-day C428S, C175S, and C175,185S capsids appeared permeable to endonucleases in comparison to wild-type and C185S capsids. Exposure to an oxidizing environment failed to enhance infectious titers of any of the cysteine mutants over time as with wild-type. Introduction of these cys mutants results in failure of the virus to mature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles for Human Papillomavirus Type 16 L1 Cysteine Residues 161, 229, and 379 in Genome Encapsidation and Capsid Stability

Human papillomavirus (HPV) capsids are formed through a network of inter- and intra-pentameric hydrophobic interactions and disulfide bonds. 72 pentamers of the major capsid protein, L1, and an unknown amount of the minor capsid protein, L2, form the structure of the capsid. There are 12 conserved L1 cysteine residues in HPV16. While C175, C185, and C428 have been implicated in the formation of...

متن کامل

Maturation of papillomavirus capsids.

The papillomavirus capsid is a nonenveloped icosahedral shell formed by the viral major structural protein, L1. It is known that disulfide bonds between neighboring L1 molecules help to stabilize the capsid. However, the kinetics of inter-L1 disulfide bond formation during particle morphogenesis have not previously been examined. We have recently described a system for producing high-titer papi...

متن کامل

Atomic model of the papillomavirus capsid.

Papillomaviruses propagate in differentiating skin cells, and certain types are responsible for the onset of cervical cancer. We have combined image reconstructions from electron cryomicroscopy (cryoEM) of bovine papillomavirus at 9 A resolution with coordinates from the crystal structure of small virus-like particles of the human papillomavirus type 16 L1 protein to generate an atomic model of...

متن کامل

Role of the disulfide bond in stabilizing and folding of the fimbrial protein DraE from uropathogenic Escherichia coli

Dr fimbriae are homopolymeric adhesive organelles of uropathogenic Escherichia coli composed of DraE subunits, responsible for the attachment to host cells. These structures are characterized by enormously high stability resulting from the structural properties of an Ig-like fold of DraE. One feature of DraE and other fimbrial subunits that makes them peculiar among Ig-like domain-containing pr...

متن کامل

Independent of Their Localization in Protein the Hydrophobic Amino Acid Residues Have No Effect on the Molten Globule State of Apomyoglobin and the Disulfide Bond on the Surface of Apomyoglobin Stabilizes This Intermediate State

At present it is unclear which interactions in proteins reveal the presence of intermediate states, their stability and formation rate. In this study, we have investigated the effect of substitutions of hydrophobic amino acid residues in the hydrophobic core of protein and on its surface on a molten globule type intermediate state of apomyoglobin. It has been found that independent of their loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011