SNEVP rp19/ PSO 4 deficiency increases PUVA‐induced senescence in mouse skin

نویسندگان

  • Rossella Monteforte
  • Georg F. Beilhack
  • Reinhard Grausenburger
  • Benjamin Mayerhofer
  • Reginald Bittner
  • Regina Grillari‐Voglauer
  • Maria Sibilia
  • Hanna Dellago
  • Erwin Tschachler
  • Florian Gruber
  • Johannes Grillari
چکیده

Senescent cells accumulate during ageing in various tissues and contribute to organismal ageing. However, factors that are involved in the induction of senescence in vivo are still not well understood. SNEV(P) (rp19/) (PSO) (4) is a multifaceted protein, known to be involved in DNA damage repair and senescence, albeit only in vitro. In this study, we used heterozygous SNEV(+/-) mice (SNEV-knockout results in early embryonic lethality) and wild-type littermate controls as a model to elucidate the role of SNEV(P) (rp19/) (PSO) (4) in DNA damage repair and senescence in vivo. We performed PUVA treatment as model system for potently inducing cellular senescence, consisting of 8-methoxypsoralen in combination with UVA on mouse skin to induce DNA damage and premature skin ageing. We show that SNEV(P) (rp19/) (PSO) (4) expression decreases during organismal ageing, while p16, a marker of ageing in vivo, increases. In response to PUVA treatment, we observed in the skin of both SNEV(P) (rp19/) (PSO) (4) and wild-type mice an increase in γ-H2AX levels, a DNA damage marker. In old SNEV(P) (rp19/) (PSO) (4) mice, this increase is accompanied by reduced epidermis thickening and increase in p16 and collagenase levels. Thus, the DNA damage response occurring in the mouse skin upon PUVA treatment is dependent on SNEV(P) (rp19/) (PSO) (4) expression and lower levels of SNEV(P) (rp19/) (PSO) (4) , as in old SNEV(+/-) mice, result in increase in cellular senescence and acceleration of premature skin ageing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signature p53 mutation at DNA cross-linking sites in 8-methoxypsoralen and ultraviolet A (PUVA)-induced murine skin cancers.

A combination of psoralen and ultraviolet A radiation (PUVA) is widely used in the treatment of psoriasis. However, PUVA treatment increases the risk of developing skin cancer in psoriasis patients and induces skin cancer in mice. Since the DNA damage induced by PUVA is quite different from that induced by UV, we investigated whether PUVA-induced mouse skin cancers display carcinogen-specific m...

متن کامل

Modulation of PPARγ Provides New Insights in a Stress Induced Premature Senescence Model

Peroxisome proliferator-activated receptor gamma (PPARγ) may be involved in a key mechanism of the skin aging process, influencing several aspects related to the age-related degeneration of skin cells, including antioxidant unbalance. Therefore, we investigated whether the up-modulation of this nuclear receptor exerts a protective effect in a stress-induced premature senescence (SIPS) model bas...

متن کامل

Senescence of human fibroblasts after psoralen photoactivation is mediated by ATR kinase and persistent DNA damage foci at telomeres.

Cellular senescence is a phenotype that is likely linked with aging. Recent concepts view different forms of senescence as permanently maintained DNA damage responses partially characterized by the presence of senescence-associated DNA damage foci at dysfunctional telomeres. Irradiation of primary human dermal fibroblasts with the photosensitizer 8-methoxypsoralen and ultraviolet A radiation (P...

متن کامل

Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin

Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to ...

متن کامل

Orally administered Polypodium leucotomos extract decreases psoralen-UVA-induced phototoxicity, pigmentation, and damage of human skin.

BACKGROUND The use of psoralen-UVA (PUVA) in patients of skin phototype I to II is limited by side effects of acute phototoxicity and possible long-term carcinogenesis. OBJECTIVE We sought to assess oral Polypodium leucotomos (PL) extract in decreasing PUVA-induced phototoxicity of human skin on a clinical and histologic level. METHODS A total of 10 healthy patients with skin phototypes II ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2016