On limitwise monotonicity and maximal block functions

نویسنده

  • Charles M. Harris
چکیده

We prove the existence of a limitwise monotonic function g : N→ N \ {0} such that, for any Π1 function f : N → N \ {0}, Ran f 6= Ran g. Relativising this result we deduce the existence of an η-like computable linear ordering A such that, for any Π2 function F : Q → N \ {0}, and η-like B of order type ∑ {F (q) | q ∈ Q }, B A . We prove directly that, for any computable A which is either (i) strongly η-like or (ii) η-like with no strongly η-like interval, there exists 0′-limitwise monotonic G : Q → N \ {0} such that A has order type ∑ {G(q) | q ∈ Q }. In so doing we provide an alternative proof to the fact that, for every η-like computable linear ordering A with no strongly η-like interval, there exists computable B ∼= A with Π1 block relation. We also use our results to prove the existence of an η-like computable linear ordering which is ∆3 categorical but not ∆ 0 2 categorical.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sum Formula for Maximal Abstract Monotonicity and Abstract Rockafellar’s Surjectivity Theorem

In this paper, we present an example in which the sum of two maximal abstract monotone operators is maximal. Also, we shall show that the necessary condition for Rockafellar’s surjectivity which was obtained in ([19], Theorem 4.3) can be sufficient.

متن کامل

Partial second-order subdifferentials of -prox-regular functions

Although prox-regular functions in general are nonconvex, they possess properties that one would expect to find in convex or lowerC2  functions. The class of prox-regular functions covers all convex functions, lower C2  functions and strongly amenable functions. At first, these functions have been identified in finite dimension using proximal subdifferential. Then, the definition of prox-regula...

متن کامل

Limitwise Monotonic Functions and Their Applications

We survey what is known about limitwise monotonic functions and sets and discuss their applications in effective algebra and computable model theory. Additionally, we characterize the computably enumerable degrees that are totally limitwise monotonic, show the support strictly increasing 0′-limitwise monotonic sets on Q do not capture the sets with computable strong η-representations, and study...

متن کامل

Limitwise monotonic functions, sets, and degrees on computable domains

We extend the notion of limitwise monotonic functions to include arbitrary computable domains. We then study which sets and degrees are support increasing (support strictly increasing) limitwise monotonic on various

متن کامل

Limitwise monotonic sets of reals

1. f (x, s) f (x, s + 1) for all x and s; 2. sups f (x, s) < ∞ for every x ; 3. F(x) = sups f (x, s). A set A ⊆ N is limitwise monotonic if A equals to the range of some limitwise monotonic function. If we replace here the computable functions f by X -computable functions for some Turing oracle X then we get the notions of X -limitwise monotonic functions and sets, respectively. Note that a sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computability

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015