Ultimately Thin Double-Gate SOI MOSFETs
نویسندگان
چکیده
The operation of 1–3 nm thick SOI MOSFETs, in double-gate (DG) mode and single-gate (SG) mode (for either front or back channel), is systematically analyzed. Strong interface coupling and threshold voltage variation, large influence of substrate depletion underneath the buried oxide, absence of drain current transients, degradation in electron mobility are typical effects in these ultra-thin MOSFETs. The comparison of SG and DG configurations demonstrates the superiority of DG-MOSFETs: ideal subthreshold swing and remarkably improved transconductance (consistently higher than twice the value in SG-MOSFETs). The experimental data and the difference between SG and DG modes is explained by combining classical models with quantum calculations. The key effect in ultimately thin DG-MOSFETs is volume inversion, which primarily leads to an improvement in mobility, whereas the total inversion charge is only marginally modified.
منابع مشابه
Nano Scale Single and Double Gate SOI MOSFETs Structures and Compression of Electrical Performance Factors
With the scaling of MOSFETs in to sub-100nm regim, Silicon – on – Insulator (SOI), single gate (SG) and double gate (DG) MOSFETs are expected to replace tradional bulk MOSFETS. These novel MOSFETs devices will be strong contenders in RF applications in wireless communication market. This work is concerned about the device scaling and different design structures of nano scale SOI MOSFETs. The co...
متن کاملMOBILITY MODELING IN SOI FETS FOR DIFFERENT SUBSTRATE ORIENTATIONS AND STRAIN CONDITIONS SHORT TITLE: MOBILITY MODELING IN SOI FETs
Conduction band modification due to shear stress is investigated. Mobility in singleand double-gate SOI FETs is modeled for Silicon thin body orientation (001) and (110) under general stress conditions. Decrease of conductivity mass induced by uniaxial [110] tensile stress leads to mobility enhancement in the stress direction in ultra-thin body SOI MOSFETs.
متن کاملImplications of gate tunneling and quantum effects on compact modeling in the gate-channel stack
Simulation and modeling of gate tunneling current for thin-oxide MOSFETs and Double-Gate SOIs are discussed. Guidelines for design of leaky MOS capacitors are proposed. Resonant gate tunneling current in DG SOI is simulated, based on quantum-mechanical models, and shown to be an issue of growing concern.
متن کاملSilicon-based devices and materials for nanoscale CMOS and beyond-CMOS
At the end of the ITRS, new materials, nanotechnologies and device architectures will be needed for nanoscale CMOS and beyond-CMOS. Silicon-on-insulator (SOI)-based devices are promising for the ultimate integration of electronic circuits on silicon [1]. We will discuss a number of key issues, including: the performance of singleand multi-gate thin film MOSFETs; the comparison between Si, Ge an...
متن کاملResonant Gate Tunneling Current in Double-Gate SOI: A Simulation Study
Gate tunneling current in fully depleted, double-gate (DG) silicon-on-insultor (SOI) MOSFETs is characterized based on quantummechanical principles. The gate tunneling current for symmetrical DG SOI with ground-plane ( =1.5 nm and =5 nm) is shown to be higher relative to single-gate (bulk) MOS structure. The tunneling is enhanced as the silicon layer becomes thinner since the thinner silicon la...
متن کامل