Canonical moments and random spectral measures
نویسنده
چکیده
Abstract: We study some connections between the random moment problem and the random matrix theory. A uniform pick in a space of moments can be lifted into the spectral probability measure of the pair (A, e) where A is a random matrix from a classical ensemble and e is a fixed unit vector. This random measure is a weighted sampling among the eigenvalues of A. We also study the large deviations properties of this random measure when the dimension of the matrix grows. The rate function for these large deviations involves the reversed Kullback information.
منابع مشابه
Matrix measures, random moments and Gaussian ensembles
We consider the moment space Mn corresponding to p × p real or complex matrix measures defined on the interval [0, 1]. The asymptotic properties of the first k components of a uniformly distributed vector (S1,n, . . . , Sn,n) ∗ ∼ U(Mn) are studied if n → ∞. In particular, it is shown that an appropriately centered and standardized version of the vector (S1,n, . . . , Sk,n) ∗ converges weakly to...
متن کاملSOME RESULTS OF MOMENTS OF UNCERTAIN RANDOM VARIABLES
Chance theory is a mathematical methodology for dealing with indeterminatephenomena including uncertainty and randomness.Consequently, uncertain random variable is developed to describe the phenomena which involveuncertainty and randomness.Thus, uncertain random variable is a fundamental concept in chance theory.This paper provides some practical quantities to describe uncertain random variable...
متن کاملThe Limiting Spectra of Girko’s Block-matrix
To analyze the limiting spectral distribution of some random blockmatrices, Girko [7] uses a system of canonical equations from [6]. In this paper, we use the method of moments to give an integral form for the almost sure limiting spectral distribution of such matrices.
متن کاملSIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM
Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $A(G)$ the adjacency matrix of $G$. The signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
متن کاملOn Exact Scaling Log-infinitely Divisible Cascades
In this paper we extend some classical results valid for canonical multiplicative cascades to exact scaling log-infinitely divisible cascades. We complete previous results on non-degeneracy and moments of positive orders obtained by Barral and Mandelbrot, and Bacry and Muzy: we provide a necessary and sufficient condition for the non-degeneracy of the limit measures of these cascades, as well a...
متن کامل