Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models

نویسندگان

  • Jinyong Hahn
  • Guido Kuersteiner
چکیده

This paper considers bandwidth selection for spectral density estimators based on panel data sets. The spectral densities of greatest interest in this paper are the ones that appear in the bias expression for …xed e¤ects estimators in nonlinear dynamic panel models obtained by Hahn and Kuersteiner. The bias estimation problem is di¤erent from the usual HAC estimation problem because the need for positive de…niteness does not arise. As a consequence, the usual justi…cation for kernel smoothing of spectral estimators does not apply to this case. However, without kernel smoothing the bandwidth selection problem is signi…cantly more di¢ cult because in this case not only the usual proportionality constants are data-dependent but also the optimal rate at which the bandwidth parameter grows with sample size. In this paper an in…nite order VAR model is used to obtain an estimate of the approximate mean squared error of the spectral estimator. It is shown that selecting the bandwidth parameter based on the estimated mean squared error criterion is asymptotically equivalent to the optimal infeasible bandwidth choice. Monte Carlo simulations show that truncated spectral estimates signi…cantly outperform kernel weighted estimates in terms of their e¤ectiveness in reducing bias in the panel application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Structural Parameters and Marginal Effects in Binary Choice Panel Data Models with Fixed Effects

Fixed effects estimates of structural parameters in nonlinear panel models can be severely biased due to the incidental parameters problem. In this paper I show that the most important component of this incidental parameters bias for probit fixed effects estimators of index coefficients is proportional to the true parameter value, using a large-T expansion of the bias. This result allows me to ...

متن کامل

Split-panel Jackknife Estimation of Fixed-effect Models

We propose a jackknife for reducing the order of the bias of maximum likelihood estimates of nonlinear dynamic fixed effects panel models. In its simplest form, the half-panel jackknife, the estimator is just 2θ̂ − θ1/2, where θ̂ is the MLE from the full panel and θ1/2 is the average of the two half-panel MLEs, each using T/2 time periods and all N cross-sectional units. This estimator eliminates...

متن کامل

Alternative GMM estimators for first-order autoregressive panel model: An improving efficiency approach

This paper considers first-order autoregressive panel model which is a simple model for dynamic panel data (DPD) models. The generalized method of moments (GMM) gives efficient estimators for these models. This efficiency is affected by the choice of the weighting matrix which has been used in GMM estimation. The non-optimal weighting matrices have been used in the conventional GMM estimators. ...

متن کامل

Monte-Carlo comparison of alternative estimators for dynamic panel data models

This paper compares the performance of three recently proposed estimators for dynamic panel data models (LSDV bias-corrected, MLE and MDE) along with GMM. Using Monte-Carlo, we find that MLE and biascorrected estimators have the smallest bias and are good alternatives for the GMM. System-GMM outperforms the rest in ‘difficult’ designs. Unfortunately, bias-corrected estimator is not reliable in ...

متن کامل

Fixed Effects Estimation of Structural Parameters and Marginal Effects in Panel Probit Models

Fixed effects estimators of nonlinear panel models can be severely biased due to the incidental parameters problem. In this paper I find that the most important component of this incidental parameters bias for probit fixed effects estimators of index coefficients is proportional to the true value of these coefficients, using a large-T expansion of the bias. This result allows me to derive a low...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007