Extraction of Fetal Heart Rate and Fetal Heart Rate Variability from Mother's ECG Signal
نویسندگان
چکیده
This paper describes a new method for extracting the fetal heart rate (fHR) and the fetal heart rate variability (fHRV) signal non-invasively using abdominal maternal electrocardiogram (mECG) recordings. The extraction is based on the fundamental frequency (Fourier’s) theorem. The fundamental frequency of the mother’s electrocardiogram signal (fo-m) is calculated directly from the abdominal signal. The heart rate of the fetus is usually higher than that of the mother; as a result, the fundamental frequency of the fetal’s electrocardiogram signal (fo-f) is higher than that of the mother’s (fo-f > fo-m). Notch filters to suppress mother’s higher harmonics were designed; then a bandpass filter to target fo-f and reject fo-m is implemented. Although the bandpass filter will pass some other frequencies (harmonics), we have shown in this study that those harmonics are actually carried on fo-f, and thus have no impact on the evaluation of the beat-to-beat changes (RR intervals). The oscillations of the time-domain extracted signal represent the RR intervals. We have also shown in this study that zero-to-zero evaluation of the periods is more accurate than the peak-to-peak evaluation. This method is evaluated both on simulated signals and on different abdominal recordings obtained at different gestational ages. Keywords—Aabdominal ECG, fetal heart rate variability, frequency harmonics, and fundamental frequency.
منابع مشابه
A PCA/ICA based Fetal ECG Extraction from Mother Abdominal Recordings by Means of a Novel Data-driven Approach to Fetal ECG Quality Assessment
Background: Fetal electrocardiography is a developing field that provides valuable information on the fetal health during pregnancy. By early diagnosis and treatment of fetal heart problems, more survival chance is given to the infant.Objective: Here, we extract fetal ECG from maternal abdominal recordings and detect R-peaks in order to recognize fetal heart rate. On the next step, we find a be...
متن کاملHeart Rate Variability Classification using Support Vector Machine and Genetic Algorithm
Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...
متن کاملExtraction of Fetal QRS Complex from Abdominal ECG Signals
Background: Extraction of Fetal ECG signal from non-invasive abdominal ECG signal is an important clinical application. Fetal ECG signal provides significant and valuable information about the fetal heart growth and health condition. Objective: Abdominal signals are usually corrupted by high amplitude maternal ECG signals and often found superimposed with the Fetal ECG signal. Suppression of ma...
متن کاملFetal Heart Rate Variability Extraction by Frequency Tracking
In this work, we propose an algorithm to extract the fetal heart rate variability from an ECG measured from the mother abdomen. The algorithm consists of two methods: a separation algorithm based on second-order statistics that extracts the desired signal in one shot through the data, and a hearth instantaneous frequency (HIF) estimator. The HIF algorithm is used to extract the mother heart rat...
متن کاملExtracting fetal heart signal from noisy maternal ECG by multivariate singular spectrum analysis
Fetal heart rate and its beat-to-beat variability are two important indications about the health and condition of the fetus. The observed maternal electrocardiogram (ECG) signal consists of mother heart signal and fetal heart signal and is often very noisy. In this paper, we propose a multivariate singular spectrum analysis (MSSA) for extracting and separating the mother heart signal, the fetal...
متن کامل