RhoA is dispensable for axon guidance of sensory neurons in the mouse dorsal root ganglia
نویسندگان
چکیده
RhoA, a member of the Rho family small GTPases, has been shown to play important roles in axon guidance. However, to date, the physiological function of RhoA in axon guidance events in vivo has not been determined genetically in animals. Here we show that RhoA mRNA is strongly expressed by sensory neurons in the developing mouse dorsal root ganglia (DRG). We have deleted RhoA in sensory neurons of the DRG using RhoA-floxed mice under the Wnt1-Cre driver in which Cre is strongly expressed in sensory neurons. Peripheral projections of sensory neurons appear normal and there are no detectable defects in the central projections of either cutaneous or proprioceptive sensory neurons in RhoA(f/f); Wnt1-Cre mice. Furthermore, a co-culture assay using DRG explants from RhoA(f/f); Wnt1-Cre embryos, and 293T cells expressing semaphorin3A (Sema3A) reveals that RhoA is not required for Sema3A-mediated axonal repulsion of sensory neurons. Expression of RhoC, a closely related family member, is increased in RhoA-deficient sensory neurons and may play a compensatory role in this context. Taken together, these genetic studies demonstrate that RhoA is dispensable for peripheral and central projections of sensory neurons in the DRG.
منابع مشابه
Role of a voltage-sensitive calcium channel blocker on inhibition of apoptosis in sensory neurons of cultured dorsal root ganglia in adult rat
Introduction: Under pathological conditions, abnormal increase in intracellular calcium concentrations is believed to induce cell death. In the present study, a voltage-sensitive calcium channel blocker (loperamide hydrochloride) was used to investigate its role in inhibition of apoptosis in sensory neurons of cultured spinal dorsal root ganglia (DRG). Methods: L5 DRG from adult rats were di...
متن کاملاثر محافظت عصبی اسید اوریک در پیشگیری از آپوپتوز نورونهای گانگلیون ریشه پشتی اعصاب نخاعی
Background and Objective: The neuroprotective effect of uric acid as a natural antioxidant on neurodegenerative diseases has been proposed repeatedly, but its antiapoptotic effect on spinal neurons has not been examined yet. Due to the critical role of sensory neurons in the improvement of functional outcome in neuroprotective strategies, the antiapoptotic effect of uric acid on dorsal root gan...
متن کاملNpn-1 Primes Limbs for Motion
During neural development, the axons of sensory and motor neurons must extend over long distances—meters in some animals—to reach the most distant parts of the limbs. The axons of these neurons adhere tightly together to form spinal nerves that project over these distances to their peripheral targets. This process, called fasciculation, controls axon outgrowth and guidance. However, the underly...
متن کاملC-type natriuretic peptide is a bifurcation factor for sensory neurons
Neuronal circuits are shaped during development by the coordinated action of guidance factors and signals that regulate axonal branching. Unlike guidance cues, the molecules and signaling cascades that underlie axonal branching remain to be resolved. Here we show that the secreted molecule C-type natriuretic peptide (CNP) induces a cGMP signaling cascade via its receptor particulate guanylyl cy...
متن کاملRho-independent stimulation of axon outgrowth and activation of the ERK and Akt signaling pathways by C3 transferase in sensory neurons
Peripheral nerve injury triggers the activation of RhoA in spinal motor and peripheral sensory neurons. RhoA activates a number of effector proteins including the Rho-associated kinase, ROCK, which targets the cytoskeleton and leads to inhibition of neurite outgrowth. Blockade of the Rho/ROCK pathway by pharmacological means improves axon regeneration after experimental injury. C3(bot) transfer...
متن کامل