Essential Amino Acid Supplementation by Gut Microbes of a Wood-Feeding Cerambycid.

نویسندگان

  • Paul A Ayayee
  • Thomas Larsen
  • Cristina Rosa
  • Gary W Felton
  • James G Ferry
  • Kelli Hoover
چکیده

Insects are unable to synthesize essential amino acids (EAAs) de novo, thus rely on dietary or symbiotic sources for them. Wood is a poor resource of nitrogen in general, and EAAs in particular. In this study, we investigated whether gut microbiota of the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), a cerambycid that feeds in the heartwood of healthy host trees, serve as sources of EAAs to their host under different dietary conditions. δ(13)C-stable isotope analyses revealed significant δ(13)C-enrichment (3.4 ± 0.1‰; mean ± SEM) across five EAAs in wood-fed larvae relative to their woody diet. δ(13)C values for the consumers greater than 1‰ indicate significant contributions from non-dietary EAA sources (symbionts in this case). In contrast, δ(13)C-enrichment of artificial diet-fed larvae (controls) relative to their food source was markedly less (1.7 ± 0.1‰) than was observed in wood-fed larvae, yet still exceeded the threshold of 1‰. A predictive model based on δ(13)CEAA signatures of five EAAs from representative bacterial, fungal, and plant samples identified symbiotic bacteria and fungi as the likely supplementary sources of EAA in wood-fed larvae. Using the same model, but with an artificial diet as the dietary source, we identified minor supplementary bacterial sources of EAA in artificial diet-fed larvae. This study highlights how microbes associated with A. glabripennis can serve as a source of EAAs when fed on nutrient-limited diets, potentially circumventing the dietary limitations of feeding on woody substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maintenance of essential amino acid synthesis pathways in the Blattabacterium cuenoti symbiont of a wood-feeding cockroach.

In addition to harbouring intestinal symbionts, some animal species also possess intracellular symbiotic microbes. The relative contributions of gut-resident and intracellular symbionts to host metabolism, and how they coevolve are not well understood. Cockroaches and the termite Mastotermes darwiniensis present a unique opportunity to examine the evolution of spatially separated symbionts, as ...

متن کامل

Functional genomics and microbiome profiling of the Asian longhorned beetle (<i>Anoplophora glabripennis</i>) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles

Background: Wood-feeding beetles harbor an ecologically rich and taxonomically diverse assemblage of gut microbes that appear to promote survival in woody tissue, which is devoid of nitrogen and essential nutrients. Nevertheless, the contributions of these apparent symbionts to digestive physiology and nutritional ecology remain uncharacterized in most beetle lineages. Results: Through parallel...

متن کامل

Can 13C stable isotope analysis uncover essential amino acid provisioning by termite-associated gut microbes?

Gut-associated microbes of insects are postulated to provide a variety of nutritional functions including provisioning essential amino acids (EAAs). Demonstrations of EAA provisioning in insect-gut microbial systems, nonetheless, are scant. In this study, we investigated whether the eastern subterranean termite Reticulitermes flavipes sourced EAAs from its gut-associated microbiota. δ (13)CEAA ...

متن کامل

Host-specific assemblages typify gut microbial communities of related insect species

Mutualisms between microbes and insects are ubiquitous and facilitate exploitation of various trophic niches by host insects. Dictyopterans (mantids, cockroaches and termites) exhibit trophisms that range from omnivory to strict wood-feeding and maintain beneficial symbioses with the obligate endosymbiont, Blattabacterium, and/or diverse gut microbiomes that include cellulolytic and diazotrophi...

متن کامل

Compensatory growth, proximate composition and amino acid contents after experiencing cycles of feed deprivation and re-feeding in young yellow catfish (Pelteobagrus fulvidraco R.)

The compensatory growth, proximate composition and amino acid contents changes of young yellow catfish (Pelteobagrus fulvidraco R.) (1.63-1.69 g) had been investigated using a 45-day cyclic feed deprivation and re-feeding experiment. The control group (S0) was fed daily with live tubificid worms (Limnodrilus hoffmeisteri), while the S1/4, S1/2, and S1/1 groups cyclically experienced one-day of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental entomology

دوره 45 1  شماره 

صفحات  -

تاریخ انتشار 2016