Symmetric Primal-dual Path following Algorithms for Semideenite Programming

نویسندگان

  • Jos F. Sturm
  • Shuzhong Zhang
چکیده

In this paper a symmetric primal-dual transformation for positive semideenite programming is proposed. For standard SDP problems, after this symmetric transformation the primal variables and the dual slacks become identical. In the context of linear programming, existence of such a primal-dual transformation is a well known fact. Based on this symmetric primal-dual transformation we derive Newton search directions for primal-dual path-following algorithms for semideenite programming. In particular, we generalize: (1) the short step path following algorithm, (2) the predictor-corrector algorithm and (3) the largest step algorithm to semideenite programming. It is shown that these algorithms require at most O(p n j log j) main iterations for computing an-optimal solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric primal - dual path following

In this paper a symmetric primal-dual transformation for positive semideenite programming is proposed. For standard SDP problems, after this symmetric transformation the primal variables and the dual slacks become identical. In the context of linear programming, existence of such a primal-dual transformation is a well known fact. Based on this symmetric primal-dual transformation we derive Newt...

متن کامل

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

A Uniied Analysis for a Class of Long-step Primal-dual Path-following Interior-point Algorithms for Semideenite Programming

We present a uniied analysis for a class of long-step primal-dual path-following algorithms for semideenite programming whose search directions are obtained through linearization of the symmetrized equation of the central path H P (XS) PXSP ?1 + (PXSP ?1) T ]=2 = I, introduced by Zhang. At an iterate (X; S), we choose a scaling matrix P from the class of nonsingular matrices P such that P XSP ?...

متن کامل

Primal-Dual Path-Following Algorithms for Semidefinite Programming

This paper deals with a class of primal-dual interior-point algorithms for semideenite programming (SDP) which was recently introduced by Kojima, Shindoh and Hara 11]. These authors proposed a family of primal-dual search directions that generalizes the one used in algorithms for linear programming based on the scaling matrix X 1=2 S ?1=2. They study three primal-dual algorithms based on this f...

متن کامل

Primal-Dual Path-Following Algorithms for Determinant Maximization Problems With Linear Matrix Inequalities

Primal-dual path-following algorithms are considered for determinant maximization problem (maxdet-problem). These algorithms apply Newton's method to a primal-dual central path equation similar to that in semideenite programming (SDP) to obtain a Newton system which is then symmetrized to avoid nonsymmetric search direction. Computational aspects of the algorithms are discussed, including Mehro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995