Reachability Is Harder for Directed than for Undirected Finite Graphs (Preliminary Version)
نویسندگان
چکیده
Although it is known that reachability in undirected finite graphs can be expressed by an existential monadic second-order sentence, our main result is that this is not the case for directed finite graphs (even in the presence of certain “built-in” relations, such as the successor relation). The proof makes use of Ehrenfeucht-Frai’sse games, along with probabilistic arguments. However, we show that for directed finite graphs with degree at most k , reachability is expressible by an existential monadic second-order sentence. $
منابع مشابه
A Note on the Complexity of the Reachability Problem for Tournaments
Deciding whether a vertex in a graph is reachable from another vertex has been studied intensively in complexity theory and is well understood. For common types of graphs like directed graphs, undirected graphs, dags or trees it takes a (possibly nondeterministic) logspace machine to decide the reachability problem, and the succinct versions of these problems (which often arise in hardware desi...
متن کاملReplacement Paths via Row Minima of Concise Matrices
Matrix M is k-concise if the finite entries of each column of M consist of k or fewer intervals of identical numbers. We give an O(n + m)-time algorithm to compute the row minima of any O(1)-concise n×m matrix. Our algorithm yields the first O(n+m)-time reductions from the replacement-paths problem on an n-node m-edge undirected graph (respectively, directed acyclic graph) to the single-source ...
متن کاملUNIVERSAL TRAVERSAL SEQUENCES OF LENGTH noUogn) FOR CLIQUES
The reachability problem for graphs is a key problem in understanding the power of various logarithmic space complexity classes. For example, the reachability problem for directed graphs is logspace-complete for the complexity class NspAcE(log n) [5] and hence the open question DSPACE(log n) = NSPACE(log n) can be settled by answering whether this reachability problem belongs to DsPAcE(log n). ...
متن کاملApproximating Longest Directed Paths and Cycles
We investigate the hardness of approximating the longest path and the longest cycle in directed graphs on n vertices. We show that neither of these two problems can be polynomial time approximated within n1-ε for any ε > 0 unless P = NP. In particular, the result holds for digraphs of constant bounded outdegree that contain a Hamiltonian cycle. Assuming the stronger complexity conjecture that S...
متن کاملUniversal Traversal Sequences for Expander Graphs
Graph reachability is a key problem in the study of various logarithmic space complexity classes. Its version for directed graphs is logspace complete for NSPACE(logn), and hence if proved to be in DSPACE(logn), the open question DSPACE(logn) = NSPACE(log n) will be settled. Seemingly the problem is easier for undirected graphs. In [1] it was shown to be in RLP (1-sided error, logspace, polynom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 55 شماره
صفحات -
تاریخ انتشار 1988