The equiform differential geometry of curves in the pseudo - Galilean space ∗
نویسندگان
چکیده
In this paper the equiform differential geometry of curves in the pseudo-Galilean space G3 is introduced. Basic invariants and a moving trihedron are described. Frenet formulas are derived and the fundamental theorem of curves in equiform geometry of G3 is proved. The curves of constant curvatures are described.
منابع مشابه
A characterization of curves in Galilean 4-space $G_4$
In the present study, we consider a regular curve in Galilean $4$-space $mathbb{G}_{4}$ whose position vector is written as a linear combination of its Frenet vectors. We characterize such curves in terms of their curvature functions. Further, we obtain some results of rectifying, constant ratio, $T$-constant and $N$-constant curves in $mathbb{G}_{4}$.
متن کاملSurfaces of Constant Curvature in the Pseudo-Galilean Space
We develop the local theory of surfaces immersed in the pseudo-Galilean space, a special type of Cayley-Klein spaces. We define principal, Gaussian, and mean curvatures. By this, the general setting for study of surfaces of constant curvature in the pseudo-Galilean space is provided. We describe surfaces of revolution of constant curvature. We introduce special local coordinates for surfaces of...
متن کاملOn Galilean Connections and the First Jet Bundle
We express the first jet bundle of curves in Euclidean space as homogeneous spaces associated to a Galilean-type group. Certain Cartan connections on a manifold with values in the Lie algebra of the Galilean group are characterized as geometries associated to systems of second order ordinary differential equations. We show these Cartan connections admit a form of normal coordinates, and that in...
متن کاملContributions to differential geometry of spacelike curves in Lorentzian plane L2
In this work, first the differential equation characterizing position vector of spacelike curve is obtained in Lorentzian plane $mathbb{L}^{2}.$ Then the special curves mentioned above are studied in Lorentzian plane $mathbb{L}%^{2}.$ Finally some characterizations of these special curves are given in $mathbb{L}^{2}.$
متن کاملSome Characterizations of Isotropic Curves In the Euclidean Space
The curves, of which the square of the distance between the two points equal to zero, are called minimal or isotropic curves [4]. In this work, first, necessary and sufficient conditions to be a Pseudo Helix, which is a special case of such curves, are presented. Thereafter, it is proven that an isotropic curve’s position vector and pseudo curvature satisfy a vector differential equation of fou...
متن کامل