In Vitro Effects of Hollow Gold Nanoshells on Human Aortic Endothelial Cells

نویسندگان

  • Chunrong Gu
  • Hengfang Wu
  • Gaoyuan Ge
  • Xiongzhi Li
  • Zhirui Guo
  • Zhiping Bian
  • Jindan Xu
  • Hua Lu
  • Xiangjian Chen
  • Di Yang
چکیده

Gold nanoparticles are emerging as promising biomedical tools due to their unique nanoscale characteristics. Our purpose was to synthesize a hollow-shaped gold nanoparticle and to investigate its effect on human aortic endothelial cells (HAECs) in vitro. Hollow gold nanoshells with average 35-nm diameters and 10-nm shell thickness were obtained by galvanic replacement using quasi-spherical nanosilver as sacrifice-template. Our results showed that hollow gold nanoshells in the culture medium could be internalized into the cytoplasm of HAECs. No cytotoxicity effect of hollow gold nanoshells on HAECs was observed within the test concentrations (0-0.8 μg/mL) and test exposure period (0-72 h) by tetrazolium dye assay. Meanwhile, the release of cell injury biomarker, lactate dehydrogenase, was not significantly higher than that from control cells (without hollow gold nanoshells). The concentrations of vasodilators, nitric oxide, and prostacyclin I-2 were not changed, but the vasoconstrictor endothelin-1 was decreased by hollow gold nanoshells treatment in HAECs. HAECs exposed to hollow gold nanoshells resulted in suppressing expressions of genes involved in apoptosis and activating expressions of genes of adhesion molecules. Moreover, we demonstrated by in vitro endothelial tube formation that hollow gold nanoshells (0.8 μg/mL) could not inhibit angiogenesis by the HAECs. Altogether, these results indicate that the structure and major function of HAECs would not be disrupted by hollow gold nanoshell treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Vitro Investigation into Plasmonic Photothermal Effect of Hollow Gold Nanoshell Irradiated with Incoherent Light

Introduction: Hollow gold nanoshells (HAuNS) are one of the most attractive nanostructures for biomedical applications due to their interesting physicochemical properties. This study sought to evaluate the plasmonic photothermal effect of HAuNS irradiated with incoherent light on melanoma cell line. Materials and Methods: After the synthesis of nanostructures, the temperature changes of HAuNS ...

متن کامل

Modified Photochemical Properties of Mitoxantrone by Plasmonic Photothermal Response of Hollow Gold Nanoshells

Introduction: Mitoxantrone (MX) has been introduced as a photosensitizer drug. However, due to some side effects, the widespread use of this drug has been confronted with some limitations. Hollow gold nanoshells (HGN) have attracted considerable attention due to their interesting photochemical features that can use as nanocarrier. In this paper, the thermal response of MX and the use of this pr...

متن کامل

In-vitro Investigations of Skin Closure using Diode Laser and Protein Solder Containing Gold Nanoshells

Introduction: Laser tissue soldering is a new technique for repair of various tissues including the skin, liver, articular cartilage and nerves and is a promising alternative to suture. To overcome the problems of thermal damage to surrounding tissues and low laser penetration depth, some exogenous chromophores such as gold nanoshells, a new class of nanoparticles consisting of a dielectric cor...

متن کامل

The effect of microRNA-125 on the adhesion molecule expression of integrin beta2 and adhesive determination of endothelial cells isolated from human aorta to monocyte

Background: The immune-mediated responses in vascular cells may include the increased expression of endothelial adhesion molecules, leukocyte rolling and infiltration, cellular lipid dysregulation and vascular smooth muscle cells (VSMCs) differentiation. Investigating the cellular and molecular events involved in the rolling process is useful for treatment or prevention of the vessel stenosis es...

متن کامل

Near-IR mediated intracellular uncaging of NO from cell targeted hollow gold nanoparticles.

We demonstrate modulation of nitric oxide release in solution and in human prostate cancer cells from a thiol functionalized cupferron (TCF) absorbed on hollow gold nanoshells (HGNs) using near-infrared (NIR) light. NO release from the TCF-HGN conjugates occurs through localized surface heating due to NIR excitation of the surface plasmon. Specific HGN targeting is achieved through cell surface...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016