Role of Rac1 GTPase in NADPH Oxidase Activation and Cognitive Impairment Following Cerebral Ischemia in the Rat
نویسندگان
چکیده
BACKGROUND Recent work by our laboratory and others has implicated NADPH oxidase as having an important role in reactive oxygen species (ROS) generation and neuronal damage following cerebral ischemia, although the mechanisms controlling NADPH oxidase in the brain remain poorly understood. The purpose of the current study was to examine the regulatory and functional role of the Rho GTPase, Rac1 in NADPH oxidase activation, ROS generation and neuronal cell death/cognitive dysfunction following global cerebral ischemia in the male rat. METHODOLOGY/PRINCIPAL FINDINGS Our studies revealed that NADPH oxidase activity and superoxide (O(2)(-)) production in the hippocampal CA1 region increased rapidly after cerebral ischemia to reach a peak at 3 h post-reperfusion, followed by a fall in levels by 24 h post-reperfusion. Administration of a Rac GTPase inhibitor (NSC23766) 15 min before cerebral ischemia significantly attenuated NADPH oxidase activation and O(2)(-) production at 3 h after stroke as compared to vehicle-treated controls. NSC23766 also attenuated "in situ" O(2)(-) production in the hippocampus after ischemia/reperfusion, as determined by fluorescent oxidized hydroethidine staining. Oxidative stress damage in the hippocampal CA1 after ischemia/reperfusion was also significantly attenuated by NSC23766 treatment, as evidenced by a marked attenuation of immunostaining for the oxidative stress damage markers, 4-HNE, 8-OHdG and H2AX at 24 h in the hippocampal CA1 region following cerebral ischemia. In addition, Morris Water maze testing revealed that Rac GTPase inhibition after ischemic injury significantly improved hippocampal-dependent memory and cognitive spatial abilities at 7-9 d post reperfusion as compared to vehicle-treated animals. CONCLUSIONS/SIGNIFICANCE The results of the study suggest that Rac1 GTPase has a critical role in mediating ischemia/reperfusion injury-induced NADPH oxidase activation, ROS generation and oxidative stress in the hippocampal CA1 region of the rat, and thus contributes significantly to neuronal degeneration and cognitive dysfunction following cerebral ischemia.
منابع مشابه
Protective effect of α-terpineol against impairment of hippocampal synaptic plasticity and spatial memory following transient cerebral ischemia in rats
Objective(s): Cerebral ischemia is often associated with cognitive impairment. Oxidative stress has a crucial role in the memory deficit following ischemia/reperfusion injury. α-Terpineol is a monoterpenoid with anti-inflammatory and antioxidant effects. This study was carried out to investigate the effect of α-terpineol against memory impairment following cerebral ischemia in rats. Materials a...
متن کاملEffect of Pentoxifylline on Ischemia- induced Brain Damage and Spatial Memory Impairment in Rat
Objective(s) The brief interruption of cerebral blood flow causes permanent brain damage and behavioral dysfunction. The hippocampus is highly vulnerable to ischemic insults, particularly the CA1 pyramidal cell layer. There is no effective pharmacological strategy for improving brain tissue damage induced by cerebral ischemia. Previous studies reported that pentoxifylline (PTX) has a neuroprot...
متن کاملMechanism of homocysteine-induced Rac1/NADPH oxidase activation in mesangial cells: role of guanine nucleotide exchange factor Vav2.
We have demonstrated that homocysteine (Hcys) stimulates de novo ceramide synthesis and thereby induces NADPH oxidase activation by increase of Rac GTPase activity in rat mesangial cells (RMCs). However, which isofrom of Rac GTPases is involved in Hcys-induced NADPH oxidase activity and what mechanism mediates Hcys-induced Rac GTPase activation remain unknown. The present study first addressed ...
متن کاملInhibition of the Rac1 GTPase protects against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo.
Reperfusion of ischemic tissue results in the generation of reactive oxygen species that contribute to tissue injury. The sources of reactive oxygen species in reperfused tissue are not fully characterized. We hypothesized that the small GTPase Rac1 mediates the oxidative burst in reperfused tissue and thereby contributes to reperfusion injury. In an in vivo model of mouse hepatic ischemia/repe...
متن کاملRole of Rac1 GTPase activation in atrial fibrillation.
OBJECTIVES We aimed to study the role of Rac1 GTPase in atrial fibrillation (AF). BACKGROUND The signal transduction associated with AF is incompletely understood. We hypothesized that activation of Rac1 GTPase contributes to the pathogenesis of AF via activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and production of reactive oxygen species. METHODS Old mice with c...
متن کامل