Feed-forward hierarchical model of the ventral visual stream applied to functional brain image classification.
نویسندگان
چکیده
Functional brain imaging is a common tool in monitoring the progression of neurodegenerative and neurological disorders. Identifying functional brain imaging derived features that can accurately detect neurological disease is of primary importance to the medical community. Research in computer vision techniques to identify objects in photographs have reported high accuracies in that domain, but their direct applicability to identifying disease in functional imaging is still under investigation in the medical community. In particular, Serre et al. (: In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR-05). pp 994-1000) introduced a biophysically inspired filtering method emulating visual processing in striate cortex which they applied to perform object recognition in photographs. In this work, the model described by Serre et al. [2005] is extended to three-dimensional volumetric images to perform signal detection in functional brain imaging (PET, SPECT). The filter outputs are used to train both neural network and logistic regression classifiers and tested on two distinct datasets: ADNI Alzheimer's disease 2-deoxy-D-glucose (FDG) PET and National Football League players Tc99m HMPAO SPECT. The filtering pipeline is analyzed to identify which steps are most important for classification accuracy. Our results compare favorably with other published classification results and outperform those of a blinded expert human rater, suggesting the utility of this approach.
منابع مشابه
Hierarchical Spectro-Temporal Models for Speech Recognition
We seek to explore computational approaches for audition that are inspired by computational visual neuroscience. In particular, we seek to leverage recent progress over the past few years in building a biologically-faithful hierarchical, feed-forward system for visual object recognition [13,14]. The system, which was designed to closely match the currently known feed-forward path in the ventral...
متن کاملThe Müller-Lyer Illusion in a Computational Model of Biological Object Recognition
Studying illusions provides insight into the way the brain processes information. The Müller-Lyer Illusion (MLI) is a classical geometrical illusion of size, in which perceived line length is decreased by arrowheads and increased by arrowtails. Many theories have been put forward to explain the MLI, such as misapplied size constancy scaling, the statistics of image-source relationships and the ...
متن کاملThe dynamics of invariant object recognition in the human visual system.
The human visual system can rapidly recognize objects despite transformations that alter their appearance. The precise timing of when the brain computes neural representations that are invariant to particular transformations, however, has not been mapped in humans. Here we employ magnetoencephalography decoding analysis to measure the dynamics of size- and position-invariant visual information ...
متن کاملRobust Method for E-Maximization and Hierarchical Clustering of Image Classification
We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...
متن کاملHierarchical Modular Optimization of Convolutional Networks Achieves Representations Similar to Macaque IT and Human Ventral Stream
Humans recognize visually-presented objects rapidly and accurately. To understand this ability, we seek to construct models of the ventral stream, the series of cortical areas thought to subserve object recognition. One tool to assess the quality of a model of the ventral stream is the Representational Dissimilarity Matrix (RDM), which uses a set of visual stimuli and measures the distances pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human brain mapping
دوره 35 1 شماره
صفحات -
تاریخ انتشار 2014