Involvement of an ABI-like protein and a Ca2+-ATPase in drought tolerance as revealed by transcript profiling of a sweetpotato somatic hybrid and its parents Ipomoea batatas (L.) Lam. and I. triloba L.
نویسندگان
چکیده
Previously, we obtained the sweetpotato somatic hybrid KT1 from a cross between sweetpotato (Ipomoea batatas (L.) Lam.) cv. Kokei No. 14 and its drought-tolerant wild relative I. triloba L. KT1 not only inherited the thick storage root characteristic of Kokei No. 14 but also the drought-tolerance trait of I. triloba L. The aim of this study was to explore the molecular mechanism of the drought tolerance of KT1. Four-week-old in vitro-grown plants of KT1, Kokei No. 14, and I. triloba L. were subjected to a simulated drought stress treatment (30% PEG6000) for 0, 6, 12 and 24 h. Total RNA was extracted from samples at each time point, and then used for transcriptome sequencing. The gene transcript profiles of KT1 and its parents were compared to identify differentially expressed genes, and drought-related modules were screened by a weighted gene co-expression network analysis. The functions of ABI-like protein and Ca2+-ATPase, two proteins screened from the cyan and light yellow modules, were analyzed in terms of their potential roles in drought tolerance in KT1 and its parents. These analyses of the drought responses of KT1 and its somatic donors at the transcriptional level provide new annotations for the molecular mechanism of drought tolerance in the somatic hybrid KT1 and its parents.
منابع مشابه
Challenges to genome sequence dissection in sweetpotato
The development of next generation sequencing (NGS) technologies has enabled the determination of whole genome sequences in many non-model plant species. However, genome sequencing in sweetpotato (Ipomoea batatas (L.) Lam) is still difficult because of the hexaploid genome structure. Previous studies suggested that a diploid wild relative, I. trifida (H.B.K.) Don., is the most possible ancestor...
متن کاملDemographic comparison of sweetpotato weevil reared on a major host, Ipomoea batatas, and an alternative host, I. triloba
In this study, we collected life table data for the sweetpotato weevil, Cylas formicarius, grown on Ipomoea batatas and Ipomoea triloba, and analyzed them using an age-stage, two-sex life table. We also demonstrated the growth potential of C. formicarius on these two host plants by using population projection. These data will be useful to the growers to the selection or eradication of host plan...
متن کاملAn Ipomoea batatas Iron-Sulfur Cluster Scaffold Protein Gene, IbNFU1, Is Involved in Salt Tolerance
Iron-sulfur cluster biosynthesis involving the nitrogen fixation (Nif) proteins has been proposed as a general mechanism acting in various organisms. NifU-like protein may play an important role in protecting plants against abiotic and biotic stresses. An iron-sulfur cluster scaffold protein gene, IbNFU1, was isolated from a salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line LM79 in our...
متن کاملDisentangling the Origins of Cultivated Sweet Potato (Ipomoea batatas (L.) Lam.)
Sweet potato (Ipomoea batatas (L.) Lam., Convolvulaceae) counts among the most widely cultivated staple crops worldwide, yet the origins of its domestication remain unclear. This hexaploid species could have had either an autopolyploid origin, from the diploid I. trifida, or an allopolyploid origin, involving genomes of I. trifida and I. triloba. We generated molecular genetic data for a broad ...
متن کاملIbOr Regulates Photosynthesis under Heat Stress by Stabilizing IbPsbP in Sweetpotato
The Orange (Or) protein regulates carotenoid biosynthesis and environmental stress in plants. Previously, we reported that overexpression of the sweetpotato [Ipomoea batatas (L.) Lam] Or gene (IbOr) in transgenic Arabidopsis (referred to as IbOr-OX/At) increased the efficiency of photosystem II (PSII) and chlorophyll content after heat shock. However, little is known about the role of IbOr in P...
متن کامل