Full-Body Human Pose Estimation from Monocular Video Sequence via Multi-dimensional Boosting Regression
نویسندگان
چکیده
In this work, we propose a scheme to estimate two-dimensional full-body human poses in a monocular video sequence. For each frame in the video, we detect the human region using a support vector machine, and estimate the full-body human pose in the detected region using multi-dimensional boosting regression. For the human pose estimation, we design a joints relationship tree, corresponding to the full hierarchical structure of joints in a human body. Further, we make a complete set of spatial and temporal feature descriptors for each frame. Utilizing the well-designed joints relationship tree and feature descriptors, we learn a hierarchy of regressors in the training stage and employ the learned regressors to determine all the joint’s positions in the testing stage. As experimentally demonstrated, the proposed scheme achieves outstanding estimation performance.
منابع مشابه
Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression UCLA CSD-TR 050046
We address the problem of estimating human pose in video sequences, where the rough location of the human has been detected. We exploit both appearance and motion information by defining suitable features of an image and its temporal neighbors, and learning a regression map to the parameters of a model of the human body using boosting techniques. Our work is intended to bridge the gap between e...
متن کاملتخمین چنددوربینی حالت سه بعدی انسان با برازش افکنش مدل اسکلت سه بعدی مفصل دار در تصاویر سایه نما
Automatic capture and analysis of human motion, based on images or video is important issue in computer vision due to the vast number of applications in animation, surveillance, biomechanics, Human Computer Interaction, entertainment and game industry. In these applications, it is clear that 3D human pose estimation is an essential part. Therefore, its accuracy has a great effect on the perform...
متن کاملCamera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images
In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...
متن کاملFlowCap: 2D Human Pose from Optical Flow
We estimate 2D human pose from video using only optical flow. The key insight is that dense optical flow can provide information about 2D body pose. Like range data, flow is largely invariant to appearance but unlike depth it can be directly computed from monocular video. We demonstrate that body parts can be detected from dense flow using the same random forest approach used by the Microsoft K...
متن کاملCascaded 3D Full-body Pose Regression from Single Depth Image at 100 FPS
There are increasingly real-time live applications in virtual reality, where it plays an important role to capture and retarget 3D human pose. This paper presents a novel cascaded 3D full-body pose regression method to estimate accurate pose from a single depth image at 100 fps. The key idea is to train cascaded regressors based on Gradient Boosting algorithm from pre-recorded human motion capt...
متن کامل