Characterization of structural determinants of granzyme B reveals potent mediators of extended substrate specificity.
نویسندگان
چکیده
Granzymes are trypsin-like serine proteases mediating apoptotic cell death that are composed of two genetically distinct subfamilies: granzyme A-like proteases resemble trypsin in their active site architecture, while granzyme B-like proteases are quite distinct. Granzyme B prefers substrates containing P4 to P1 amino acids Ile/Val, Glu/Met/Gln, Pro/Xaa, and aspartic acid N-terminal to the proteolytic cleavage. By investigating the narrow extended specificity of the granzyme B-like proteases the mediators of their unique specificity are being defined. The foci of this study were the structural determinants Ile99, Tyr174, Arg192, and Asn218. Even modest mutations of these residues resulted in unique extended specificity profiles as determined using combinatorial substrate libraries and individual fluorogenic substrates. As with other serine proteases, Ile99 completely defines and predicts P2 specificity, primarily through the binding constant Km. Asn218 variants have minor effects alone but in combination with mutations at Arg192 and Ile99 alter P2 through P4 extended specificity. For each variant, the activity on its cognate substrate was equal to that of granzyme B for the same substrate. Thus, mutations at these determinants change extended selectivity preferentially over catalytic power. Additionally Asn218 variants result in increased activity on the wild type substrate, while the N218A/I99A variant disrupts the additivity between P2 and P4 specificity. This defines Asn218 not only as a determinant of specificity but also as a structural component required for P2 and P4 independence. This study confirms four determinants of granzyme B extended substrate specificity that constitute a canon applicable to the study of the remaining family members.
منابع مشابه
Definition and redesign of the extended substrate specificity of granzyme B.
Granzyme B is a protease involved in the induction of rapid target cell death by cytotoxic lymphocytes. Definition of the substrate specificity of granzyme B allows for the identification of in vivo substrates in this process. By using the combinatorial methods of synthetic substrate libraries and substrate-phage display, an optimal substrate for granzyme B that spans over six subsites was dete...
متن کاملGranzyme M is a regulatory protease that inactivates proteinase inhibitor 9, an endogenous inhibitor of granzyme B.
Granzyme M is a trypsin-fold serine protease that is specifically found in the granules of natural killer cells. This enzyme has been implicated recently in the induction of target cell death by cytotoxic lymphocytes, but unlike granzymes A and B, the molecular mechanism of action of granzyme M is unknown. We have characterized the extended substrate specificity of human granzyme M by using pur...
متن کاملHuman and mouse granzyme M display divergent and species-specific substrate specificities.
Cytotoxic lymphocyte protease GrM (granzyme M) is a potent inducer of tumour cell death and a key regulator of inflammation. Although hGrM (human GrM) and mGrM (mouse GrM) display extensive sequence homology, the substrate specificity of mGrM remains unknown. In the present study, we show that hGrM and mGrM have diverged during evolution. Positional scanning libraries of tetrapeptide substrates...
متن کاملThe major human and mouse granzymes are structurally and functionally divergent
Approximately 2% of mammalian genes encode proteases. Comparative genomics reveals that those involved in immunity and reproduction show the most interspecies diversity and evidence of positive selection during evolution. This is particularly true of granzymes, the cytotoxic proteases of natural killer cells and CD8+ T cells. There are 5 granzyme genes in humans and 10 in mice, and it is sugges...
متن کاملStructural and functional characterization of SplA, an exclusively specific protease of Staphylococcus aureus.
Staphylococcus aureus is a dangerous human pathogen whose antibiotic resistance is steadily increasing and no efficient vaccine is as yet available. This serious threat drives extensive studies on staphylococcal physiology and pathogenicity pathways, especially virulence factors. Spl (serine protease-like) proteins encoded by an operon containing up to six genes are a good example of poorly cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 29 شماره
صفحات -
تاریخ انتشار 2004