Heparan sulfate regulates ephrin-A3/EphA receptor signaling.

نویسندگان

  • Fumitoshi Irie
  • Misako Okuno
  • Kazu Matsumoto
  • Elena B Pasquale
  • Yu Yamaguchi
چکیده

Increasing evidence indicates that many signaling pathways involve not only ligands and receptors but also various types of coreceptors and matrix components as additional layers of regulation. Signaling by Eph receptors and their ephrin ligands plays a key role in a variety of biological processes, such as axon guidance and topographic map formation, synaptic plasticity, angiogenesis, and cancer. Little is known about whether the ephrin-Eph receptor signaling system is subject to such additional layers of regulation. Here, we show that ephrin-A3 binds to heparan sulfate, and that the presence of cell surface heparan sulfate is required for the full biological activity of ephrin-A3. Among the ephrins tested, including ephrin-A1, -A2, -A5, -B1, and -B2, only ephrin-A3 binds heparin or heparan sulfate. Ephrin-A3-dependent EphA receptor activation is reduced in mutant cells that are defective in heparan sulfate synthesis, in wild-type cells from which cell surface heparan sulfate has been removed, and in the hippocampus of conditional knockout mice defective in heparan sulfate synthesis. Ephrin-A3-dependent cell rounding is impaired in CHO cells lacking heparan sulfate, and cortical neurons lacking heparan sulfate exhibit impaired growth cone collapse. In contrast, cell rounding and growth cone collapse in response to ephrin-A5, which does not bind heparan sulfate, are not affected by the absence of heparan sulfate. These results show that heparan sulfate modulates ephrin/Eph signaling and suggest a physiological role for heparan sulfate proteoglycans in the regulation of ephrin-A3-dependent biological processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EphA receptors inhibit anti-CD3-induced apoptosis in thymocytes.

The EphA receptor tyrosine kinases interact with membrane-bound ligands of the ephrin-A subfamily. Interaction induces EphA receptor oligomerization, tyrosine phosphorylation, and, as a result, EphA receptor signaling. EphA receptors have been shown to regulate cell survival, migration, and cell-cell and cell-matrix interactions. However, their functions in lymphoid cells are only beginning to ...

متن کامل

Ephrin-A binding and EphA receptor expression delineate the matrix compartment of the striatum.

The striatum integrates limbic and neocortical inputs to regulate sensorimotor and psychomotor behaviors. This function is dependent on the segregation of striatal projection neurons into anatomical and functional components, such as the striosome and matrix compartments. In the present study the association of ephrin-A cell surface ligands and EphA receptor tyrosine kinases (RTKs) with the org...

متن کامل

EphA-Ephrin-A-Mediated β Cell Communication Regulates Insulin Secretion from Pancreatic Islets

In vertebrates, beta cells are aggregated in the form of pancreatic islets. Within these islets, communication between beta cells inhibits basal insulin secretion and enhances glucose-stimulated insulin secretion, thus contributing to glucose homeostasis during fasting and feeding. In the search for the underlying molecular mechanism, we have discovered that beta cells communicate via ephrin-As...

متن کامل

Attenuation of Eph Receptor Kinase Activation in Cancer Cells by Coexpressed Ephrin Ligands

The Eph receptor tyrosine kinases mediate juxtacrine signals by interacting "in trans" with ligands anchored to the surface of neighboring cells via a GPI-anchor (ephrin-As) or a transmembrane segment (ephrin-Bs), which leads to receptor clustering and increased kinase activity. Additionally, soluble forms of the ephrin-A ligands released from the cell surface by matrix metalloproteases can als...

متن کامل

Src family kinases are involved in EphA receptor-mediated retinal axon guidance.

EphA receptor tyrosine kinases and their ephrin ligands play important roles in wiring of the developing nervous system. We have investigated here the function of Src family kinases (SFKs) in the retinotectal projection to dissect the signaling pathways by which EphA receptors control actin/microtubule rearrangements that underlie growth cone guidance and collapse. Both EphAs and SFKs are expre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 34  شماره 

صفحات  -

تاریخ انتشار 2008