Disruption of the Putative Vascular Leak Peptide Sequence in the Stabilized Ricin Vaccine Candidate RTA1-33/44-198

نویسندگان

  • Laszlo Janosi
  • Jaimee R. Compton
  • Patricia M. Legler
  • Keith E. Steele
  • Jon M. Davis
  • Gary R. Matyas
  • Charles B. Millard
چکیده

Vitetta and colleagues identified and characterized a putative vascular leak peptide (VLP) consensus sequence in recombinant ricin toxin A-chain (RTA) that contributed to dose-limiting human toxicity when RTA was administered intravenously in large quantities during chemotherapy. We disrupted this potentially toxic site within the more stable RTA1-33/44-198 vaccine immunogen and determined the impact of these mutations on protein stability, structure and protective immunogenicity using an experimental intranasal ricin challenge model in BALB/c mice to determine if the mutations were compatible. Single amino acid substitutions at the positions corresponding with RTA D75 (to A, or N) and V76 (to I, or M) had minor effects on the apparent protein melting temperature of RTA1-33/44-198 but all four variants retained greater apparent stability than the parent RTA. Moreover, each VLP(-) variant tested provided protection comparable with that of RTA1-33/44-198 against supralethal intranasal ricin challenge as judged by animal survival and several biomarkers. To understand better how VLP substitutions and mutations near the VLP site impact epitope structure, we introduced a previously described thermal stabilizing disulfide bond (R48C/T77C) along with the D75N or V76I substitutions in RTA1-33/44-198. The D75N mutation was compatible with the adjacent stabilizing R48C/T77C disulfide bond and the T(m) was unaffected, whereas the V76I mutation was less compatible with the adjacent disulfide bond involving C77. A crystal structure of the RTA1-33/44-198 R48C/T77C/D75N variant showed that the structural integrity of the immunogen was largely conserved and that a stable immunogen could be produced from E. coli. We conclude that it is feasible to disrupt the VLP site in RTA1-33/44-198 with little or no impact on apparent protein stability or protective efficacy in mice and such variants can be stabilized further by introduction of a disulfide bond.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding a new vaccine in the ricin protein fold.

Previous attempts to produce a vaccine for ricin toxin have been hampered by safety concerns arising from residual toxicity and the undesirable aggregation or precipitation caused by exposure of hydrophobic surfaces on the ricin A-chain (RTA) in the absence of its natural B-chain partner. We undertook a structure-based solution to this problem by reversing evolutionary selection on the 'ribosom...

متن کامل

Stability of isolated antibody-antigen complexes as a predictive tool for selecting toxin neutralizing antibodies

Ricin is an A-B ribosome inactivating protein (RIP) toxin composed of an A-chain subunit (RTA) that contains a catalytic N-glycosidase and a B-chain (RTB) lectin domain that binds cell surface glycans. Ricin exploits retrograde transport to enter into the Golgi and the endoplasmic reticulum, and then dislocates into the cytoplasm where it can reach its substrate, the rRNA. A subset of isolated ...

متن کامل

Assessment of humoral immune response of a Cytomegalovirus DNA-vaccine candidate in BALB/c mice

Introduction: Glycoprotein B (gB) is the major antigen for induction of humoral responses against human cytomegalovirus (HCMV) making it an attractive candidate for immune prophylaxis. In the present study, the humoral immune response of BALB/c mice to a truncated HCMV gB protein fused with GFP was evaluated. Methods: The truncated gB coding sequence was synthesized and cloned in pEGFPN1 eukary...

متن کامل

Process development and cGMP manufacturing of a recombinant ricin vaccine: an effective and stable recombinant ricin A-chain vaccine-RVEc™.

Ricin is a potent toxin and a potential bioterrorism weapon with no specific countermeasures or vaccines available. The holotoxin is composed of two polypeptide chains linked by a single disulfide bond: the A-chain (RTA), which is an N-glycosidase enzyme, and the B-chain (RTB), a lectin polypeptide that binds galactosyl moieties on the surface of the mammalian target cells. Previously (McHugh e...

متن کامل

Improved stability of a protein vaccine through elimination of a partially unfolded state.

Ricin is a potent toxin presenting a threat as a biological weapon. The holotoxin consists of two disulfide-linked polypeptides: an enzymatically active A chain (RTA) and a galactose/N-acetylgalactosamine-binding B chain. Efforts to develop an inactivated version of the A chain as a vaccine have been hampered by limitations of stability and solubility. Previously, recombinant truncated versions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2013