The square root rank of the correlation polytope is exponential

نویسندگان

  • Troy Lee
  • Zhaohui Wei
چکیده

The square root rank of a nonnegative matrix A is the minimum rank of a matrix B such that A = B ◦B, where ◦ denotes entrywise product. We show that the square root rank of the slack matrix of the correlation polytope is exponential. Our main technique is a way to lower bound the rank of certain matrices under arbitrary sign changes of the entries using properties of the roots of polynomials in number fields. The square root rank is an upper bound on the positive semidefinite rank of a matrix, and corresponds the special case where all matrices in the factorization are rank-one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The matching polytope does not admit fully-polynomial size relaxation schemes

The groundbreaking work of Rothvoß [2014] established that every linear program expressing the matching polytope has an exponential number of inequalities (formally, the matching polytope has exponential extension complexity). We generalize this result by deriving strong bounds on the LP inapproximability of the matching problem: for fixed 0 < ε < 1, every (1 − ε/n)-approximating LP requires an...

متن کامل

Maximizing a Class of Utility Functions Over the Vertices of a Polytope

Given a polytope X, a monotone concave univariate function g, and two vectors c and d, we consider the discrete optimization problem of finding a vertex of X that maximizes the utility function c′x+g(d′x). This problem has numerous applications in combinatorial optimization with a probabilistic objective, including estimation of project duration with stochastic times, in reliability models and ...

متن کامل

Evaluation proceeds model middling kriging in distribution spatial land use city (Case study: city Kerman)

Analysis probative spatial data method for checking patterns spatial accidental and accidental is distribution variables spatial and correlation spatial from more usage and more important tools Analysis for is the research in the case spatial data. The aim in research, is evaluation operation methods find inside in distribution spatial land use city Kerman. That on base of methods find inside k...

متن کامل

Exponential lower bounds on fixed-size psd rank and semidefinite extension complexity

There has been a lot of interest recently in proving lower bounds on the size of linear programs needed to represent a given polytope P . In a breakthrough paper Fiorini et al. [FMP12] showed that any linear programming formulation of maximum-cut must have exponential size. A natural question to ask is whether one can prove such strong lower bounds for semidefinite programming formulations. In ...

متن کامل

Exploring the bounds on the positive semidefinite rank

The nonnegative and positive semidefinite (PSD-) ranks are closely connected to the nonnegative and positive semidefinite extension complexities of a polytope, which are the minimal dimensions of linear and SDP programs which represent this polytope. Though some exponential lower bounds on the nonnegative [FMP12] and PSD[LRS15] ranks has recently been proved for the slack matrices of some parti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1411.6712  شماره 

صفحات  -

تاریخ انتشار 2014