Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons.

نویسندگان

  • Y Du
  • K R Bales
  • R C Dodel
  • E Hamilton-Byrd
  • J W Horn
  • D L Czilli
  • L K Simmons
  • B Ni
  • S M Paul
چکیده

Neurotoxicity induced by overstimulation of N-methyl-D-aspartate (NMDA) receptors is due, in part, to a sustained rise in intracellular Ca2+; however, little is known about the ensuing intracellular events that ultimately result in cell death. Here we show that overstimulation of NMDA receptors by relatively low concentrations of glutamate induces apoptosis of cultured cerebellar granule neurons (CGNs) and that CGNs do not require new RNA or protein synthesis. Glutamate-induced apoptosis of CGNs is, however, associated with a concentration- and time-dependent activation of the interleukin 1beta-converting enzyme (ICE)/CED-3-related protease, CPP32/Yama/apopain (now designated caspase 3). Further, the time course of caspase 3 activation after glutamate exposure of CGNs parallels the development of apoptosis. Moreover, glutamate-induced apoptosis of CGNs is almost completely blocked by the selective cell permeable tetrapeptide inhibitor of caspase 3, Ac-DEVD-CHO but not by the ICE (caspase 1) inhibitor, Ac-YVAD-CHO. Western blots of cytosolic extracts from glutamate-exposed CGNs reveal both cleavage of the caspase 3 substrate, poly(ADP-ribose) polymerase, as well as proteolytic processing of pro-caspase 3 to active subunits. Our data demonstrate that glutamate-induced apoptosis of CGNs is mediated by a posttranslational activation of the ICE/CED-3-related cysteine protease caspase 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of the CED3/ICE-related protease CPP32 in cerebellar granule neurons undergoing apoptosis but not necrosis.

Neuronal apoptosis occurs during nervous system development and after pathological insults to the adult nervous system. Inhibition of CED3/ICE-related proteases has been shown to inhibit neuronal apoptosis in vitro and in vivo, indicating a role for these cysteine proteases in neuronal apoptosis. We have studied the activation of the CED3/ICE-related protease CPP32 in two in vitro models of mou...

متن کامل

Neuroprotective Effect of Total and Sequential Extract of Scrophularia striata Boiss. in Rat Cerebellar Granule Neurons Following Glutamate- Induced Neurotoxicity: An In-vitro Study

Neuroprotective effect of the extract from aerial parts of Scrophularia striata Boiss(Scrophulariaceae) was investigated against glutamate-induced neurotoxicity on cultured rat pupsCerebellar Granule Neurons (CGNs). CGNs from 8 days old Sprague-Dawley rat were preparedand cultured. The experiments were performed after 8 days in culture. The plant was collected fromthe northeastern part (Ruin re...

متن کامل

Neuroprotective Effect of Total and Sequential Extract of Scrophularia striata Boiss. in Rat Cerebellar Granule Neurons Following Glutamate- Induced Neurotoxicity: An In-vitro Study

Neuroprotective effect of the extract from aerial parts of Scrophularia striata Boiss(Scrophulariaceae) was investigated against glutamate-induced neurotoxicity on cultured rat pupsCerebellar Granule Neurons (CGNs). CGNs from 8 days old Sprague-Dawley rat were preparedand cultured. The experiments were performed after 8 days in culture. The plant was collected fromthe northeastern part (Ruin re...

متن کامل

The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32.

Caspase-3 knockout mice exhibit thickening of the internal granule cell layer of the cerebellum. Concurrently, it has been shown that intracerebral injection of pituitary adenylate cyclase-activating polypeptide (PACAP) induces a transient increase of the thickness of the cerebellar cortex. In the present study, we have investigated the possible effect of PACAP on caspase activity in cultured c...

متن کامل

1-Methyl-4-phenylpyridinium induces autocrine excitotoxicity, protease activation, and neuronal apoptosis.

The pathogenesis of several neurodegenerative diseases may involve indirect excitotoxic mechanisms, where glutamate receptor overstimulation is a secondary consequence of initial functional defects of neurons (e.g., impairment of mitochondrial energy generation). The neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and other mitochondrial inhibitors (e.g., rotenone or 3-nitropropionic acid) elicit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 94 21  شماره 

صفحات  -

تاریخ انتشار 1997