Secrecy Capacity of a Class of Broadcast Channels with an Eavesdropper
نویسندگان
چکیده
We study the security of communication between a single transmitter and many receivers in the presence of an eavesdropper for several special classes of broadcast channels. As the first model, we consider the degraded multireceiver wiretap channel where the legitimate receivers exhibit a degradedness order while the eavesdropper is more noisy with respect to all legitimate receivers. We establish the secrecy capacity region of this channel model. Secondly, we consider the parallel multireceiver wiretap channel with a less noisiness order in each subchannel, where this order is not necessarily the same for all subchannels, and hence the overall channel does not exhibit a less noisiness order. We establish the common message secrecy capacity and sum secrecy capacity of this channel. Thirdly, we study a class of parallel multireceiver wiretap channels with two subchannels, two users and an eavesdropper. For channels in this class, in the first (resp., second) subchannel, the second (resp., first) receiver is degraded with respect to the first (resp., second) receiver, while the eavesdropper is degraded with respect to both legitimate receivers in both subchannels. We determine the secrecy capacity region of this channel, and discuss its extensions to arbitrary numbers of users and subchannels. Finally, we focus on a variant of this previous channel model where the transmitter can use only one of the subchannels at any time. We characterize the secrecy capacity region of this channel as well.
منابع مشابه
Capacity Regions for Broadcast Channels With Degraded Message Sets and Message Cognition Under Different Secrecy Constraints
This paper considers a three-receiver broadcast channel with degraded message sets and message cognition. The model consists of a common message for all three receivers, a private common message for only two receivers and two additional private messages for these two receivers, such that each receiver is only interested in one message, while being fully cognizant of the other one. First, this m...
متن کاملMIMO Wiretap Channels with Arbitrarily Varying Eavesdropper Channel States
In this work, a class of information theoretic secrecy problems is addressed where the eavesdropper channel states are completely unknown to the legitimate parties. In particular, MIMO wiretap channel models are considered where the channel of the eavesdropper is arbitrarily varying over time. Assuming that the number of antennas of the eavesdropper is limited, the secrecy rate of the MIMO wire...
متن کاملSecrecy Rate Region of the Broadcast Channel with an Eavesdropper
In this paper, we consider a scenario where a source node wishes to broadcast two confidential messages to two receivers, while a wire-tapper also receives the transmitted signal. This model is motivated by wireless communications, where individual secure messages are broadcast over open media and can be received by any illegitimate receiver. The secrecy level is measured by the equivocation ra...
متن کاملBroadcast Channel with Receiver Side Information: Achieving Individual Secrecy
In this paper, we study the problem of secure communication over the broadcast channel with receiver side information, under the lens of individual secrecy constraints (i.e., information leakage from each message to an eavesdropper is made vanishing). Several coding schemes are proposed by extending known results in broadcast channels to this secrecy setting. In particular, individual secrecy p...
متن کاملSecure Broadcasting
Wyner’s wiretap channel is extended to parallel broadcast channels and fading channels with multiple receivers. In the first part of the paper, we consider the setup of parallel broadcast channels with one sender, multiple intended receivers, and one eavesdropper. We study the situations where the sender broadcasts either a common message or independent messages to the intended receivers. We de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Wireless Comm. and Networking
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009