Cryptopleurine Targets NF-κB Pathway, Leading to Inhibition of Gene Products Associated with Cell Survival, Proliferation, Invasion, and Angiogenesis

نویسندگان

  • Hong Ri Jin
  • Song Zhu Jin
  • Xing Fu Cai
  • Donghao Li
  • Xue Wu
  • Ji Xing Nan
  • Jung Joon Lee
  • Xuejun Jin
چکیده

BACKGROUND Cryptopleurine, a phenanthroquinolizidine alkaloid, was known to exhibit anticancer activity; however, the underlying mechanism is poorly understood. Because the nuclear factor-κB (NF-κB) transcription factors control many physiological processes including inflammation, immunity, and development and progression of cancer, we investigated the effects of cryptopleurine on tumor necrosis factor alpha (TNF-α)-induced NF-κB activation pathway and on the expression of NF-κB-regulated gene products associated with many pathophysiological processes. METHODOLOGY AND PRINCIPAL FINDING MDA-MB231, MDA-MB435, MCF-7, HEK293, RAW264.7 and Hep3B cells were used to examine cryptopleurine's effect on the NF-κB activation pathway. Major assays were promoter-reporter gene assay, electrophoretic mobility shift assay (EMSA), in vitro immune complex kinase assay, real-time PCR, Western blot analysis, and Matrigel invasion assay. Experiments documenting cell proliferation and apoptosis were analyzed by MTT method and flow cytometry, respectively. The results indicated that cryptopleurine suppressed the NF-κB activation through the inhibition of IκB kinase (IKK) activation, thereby blocking the phosphorylation and degradation of the inhibitor of NF-κB alpha (IκBα) and the nuclear translocation and DNA-binding activity of p65. The suppression of NF-κB by cryptopleurine led to the down-regulation of gene products involved in inflammation, cell survival, proliferation, invasion, and angiogenesis. CONCLUSIONS AND SIGNIFICANCE Our results show that cryptopleurine inhibited NF-κB activation pathway, which leads to inhibition of inflammation, proliferation, and invasion, as well as potentiation of apoptosis. Our findings provide a new insight into the molecular mechanisms and a potential application of cryptopleurine for inflammatory diseases as well as certain cancers associated with abnormal NF-κB activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pinitol targets nuclear factor-kappaB activation pathway leading to inhibition of gene products associated with proliferation, apoptosis, invasion, and angiogenesis.

Pinitol (3-O-methyl-chiroinositol), a component of traditional Ayurvedic medicine (talisapatra), has been shown to exhibit anti-inflammatory and antidiabetic activities through undefined mechanisms. Because the transcription factor nuclear factor-kappaB (NF-kappaB) has been linked with inflammatory diseases, including insulin resistance, we hypothesized that pinitol must mediate its effects thr...

متن کامل

A novel pentamethoxyflavone down-regulates tumor cell survival and proliferative and angiogenic gene products through inhibition of IκB kinase activation and sensitizes tumor cells to apoptosis by cytokines and chemotherapeutic agents.

Most anticancer drugs have their origin in traditional medicinal plants. We describe here a flavone, 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone (PMF), from the leaves of the Thai plant Gardenia obtusifolia, that has anti-inflammatory and anticancer potential. Because the nuclear factor-κB (NF-κB) pathway is linked to inflammation and tumorigenesis, we investigated the effect of PMF on this p...

متن کامل

Bharangin, a diterpenoid quinonemethide, abolishes constitutive and inducible nuclear factor-κB (NF-κB) activation by modifying p65 on cysteine 38 residue and reducing inhibitor of nuclear factor-κB α kinase activation, leading to suppression of NF-κB-regulated gene expression and sensitization of tumor cells to chemotherapeutic agents.

Although inflammatory pathways have been linked with various chronic diseases including cancer, identification of an agent that can suppress these pathways has therapeutic potential. Herein we describe the identification of a novel compound bharangin, a diterpenoid quinonemethide that can suppress pro-inflammatory pathways specifically. We found that bharangin suppresses nuclear factor (NF)-κB ...

متن کامل

Targeting the NF-κB Pathway as a Combination Therapy for Advanced Thyroid Cancer

NF-κB signaling plays an important role in tumor cell proliferation, cell survival, angiogenesis, invasion, metastasis and drug/radiation resistance. Combination therapy involving NF-κB pathway inhibition is an attractive strategy for the treatment of advanced forms of thyroid cancer. This study was designed to test the efficacy of NF-κB pathway inhibition in combination with cytotoxic chemothe...

متن کامل

Sesamin manifests chemopreventive effects through the suppression of NF-kappa B-regulated cell survival, proliferation, invasion, and angiogenic gene products.

Agents that are safe, affordable, and efficacious are urgently needed for the prevention of chronic diseases such as cancer. Sesamin, a lipid-soluble lignan, is one such agent that belongs to a class of phytoestrogens, isolated from sesame (Sesamum indicum), and has been linked with prevention of hyperlipidemia, hypertension, and carcinogenesis through an unknown mechanism. Because the transcri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012