In-cell aggregation of a polyglutamine-containing chimera is a multistep process initiated by the flanking sequence.

نویسندگان

  • Zoya Ignatova
  • Ashwani K Thakur
  • Ronald Wetzel
  • Lila M Gierasch
چکیده

Toxicity in amyloid diseases is intimately linked to the nature of aggregates, with early oligomeric species believed to be more cytotoxic than later fibrillar aggregates. Yet mechanistic understanding of how aggregating species evolve with time is currently lacking. We have explored the aggregation process of a chimera composed of a globular protein (cellular retinoic acid-binding protein, CRABP) and huntingtin exon 1 with polyglutamine tracts either above (Q53) or below (Q20) the pathological threshold using Escherichia coli cells as a model intracellular environment. Previously we showed that fusion of the huntingtin exon 1 sequence with >40Q led to structural perturbation and decreased stability of CRABP (Ignatova, Z., and Gierasch, L. M. (2006) J. Biol. Chem. 281, 12959-12967). Here we report that the Q53 chimera aggregates in cells via a multistep process: early stage aggregates are spherical and detergent-soluble, characteristics of prefibrillar aggregates, and appear to be dominated structurally by CRABP, in that they can promote aggregation of a CRABP variant but not oligoglutamine aggregation, and the CRABP domain is relatively sequestered based on its protection from proteolysis. Late stage aggregates appear to be dominated by polyGln; they are fibrillar, detergent-resistant, capable of seeding aggregation of oligoglutamine but not the CRABP variant, and show relative protection of the polyglutamine-exon1 domain from proteolysis. These results point to an evolution of the dominant sequences in intracellular aggregates and may provide molecular insight into origins of toxic prefibrillar aggregates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Examination of Ataxin-3 (atx-3) Aggregation by Structural Mass Spectrometry Techniques: A Rationale for Expedited Aggregation upon Polyglutamine (polyQ) Expansion*□S

Expansion of polyglutamine stretches leads to the formation of polyglutamine-containing neuronal aggregates and neuronal death in nine diseases for which there currently are no treatments or cures. This is largely due to a lack in understanding of the mechanisms by which expanded polyglutamine regions contribute to aggregation and disease. To complicate matters further, several of the polygluta...

متن کامل

Sequence Characterization in 3′-Flanking Region of Bovine TNF-α: Association with Milk Production Traits and Somatic Cell Score in Holstein Cattle of Iran

Background: Tumor necrosis factor- a (TNF-α) is a cytokine that was identified as a factor with a wide range of proinflammatory activities. The expression of bovine TNF-α in mammary tissue during pregnancy seems to have a role in development of the corresponding glands.Objective: Single nucleotide polymorphisms (SNPs) were defined in 3′-flanking region of...

متن کامل

Chaperones in Polyglutamine Aggregation: Beyond the Q-Stretch

Expanded polyglutamine (polyQ) stretches in at least nine unrelated proteins lead to inherited neuronal dysfunction and degeneration. The expansion size in all diseases correlates with age at onset (AO) of disease and with polyQ protein aggregation, indicating that the expanded polyQ stretch is the main driving force for the disease onset. Interestingly, there is marked interpatient variability...

متن کامل

Monomeric, Oligomeric and Polymeric Proteins in Huntington Disease and Other Diseases of Polyglutamine Expansion

Huntington disease and other diseases of polyglutamine expansion are each caused by a different protein bearing an excessively long polyglutamine sequence and are associated with neuronal death. Although these diseases affect largely different brain regions, they all share a number of characteristics, and, therefore, are likely to possess a common mechanism. In all of the diseases, the causativ...

متن کامل

Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core

Polyglutamine expansion in the huntingtin protein is the primary genetic cause of Huntington's disease (HD). Fragments coinciding with mutant huntingtin exon1 aggregate in vivo and induce HD-like pathology in mouse models. The resulting aggregates can have different structures that affect their biochemical behaviour and cytotoxic activity. Here we report our studies of the structure and functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 50  شماره 

صفحات  -

تاریخ انتشار 2007