An automatic statistical segmentation algorithm for extraction of fire and smoke regions
نویسندگان
چکیده
Estimation of the extent and spread of wildland fires is an important application of high spatial resolution multispectral images. This work addresses a fuzzy segmentation algorithm to map fire extent, active fire front, hot burn scar, and smoke regions based on a statistical model. The fuzzy results are useful data sources for integrated fire behavior and propagation models built using Dynamic Data Driven Applications Systems (DDDAS) concepts that use data assimilation techniques which require error estimates or probabilities for the data parameters. The Hidden Markov Random Field (HMRF) model has been used widely in image segmentation, but it is assumed that each pixel has a particular class label belonging to a prescribed finite set. The mixed pixel problem can be addressed by modeling the fuzzy membership process as a continuous Multivariate Gaussian
منابع مشابه
Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملAn Automatic Detection of the Fire Smoke Through Multispectral Images
One of the consequences of a fire is smoke. Occasionally, monitoring and detection of this smoke can be a solution to prevent occurrence or spreading a fire. On the other hand, due to the destructive effects of the smoke spreading on human health, measures can be taken to improve the level of health services by zoning and monitoring its expansion process. In this paper, an automated method is p...
متن کاملSalient regions detection in satellite images using the combination of MSER local features detector and saliency models
Nowadays, due to quality development of satellite images, automatic target detection on these images has been attracted many researchers' attention. Remote-sensing images follow various geospatial targets; these targets are generally man-made and have a distinctive structure from their surrounding areas. Different methods have been developed for automatic target detection. In most of these met...
متن کاملAn Unsupervised Statistical Segmentation Algorithm for Fire and Smoke Regions Extraction
Estimation of the extent and spread of wildland fires is an important application of high spatial resolution multispectral images. This work addresses an unsupervised statistical segmentation algorithm to map fire extent, fire front location, just burned area and smoke region based on a statistical model. The results are useful information for a fire propagation model to predict fire behavior. ...
متن کاملAn Intelligent Automatic Early Detection System of Forest Fire Smoke Signatures using Gaussian Mixture Model
The most important things for a forest fire detection system are the exact extraction of the smoke from image and being able to clearly distinguish the smoke from those with similar qualities, such as clouds and fog. This research presents an intelligent forest fire detection algorithm via image processing by using the Gaussian Mixture model (GMM), which can be applied to detect smoke at the ea...
متن کامل