16302u001..1-24 .. Seite1

نویسندگان

  • Doris Meder
  • Kai Simons
چکیده

Cell membranes are dynamic assemblies of a variety of lipids and proteins. They form a protective layer around the cell, but also mediate the communication with the outside world – that is, neighboring cells in a tissue, hormones and growth factors arriving with the blood supply, or pathogens trying to enter the system. The unique feature of cell membranes is that their lipid and protein constituents can self-assemble into 5 nm-thin, two-dimensional fluids composed of two apposing lipid monolayers that form a hydrophobic interior and two polar interfacial regions oriented towards the aqueous medium. This organizing principle – the lipid bilayer – is the oldest, still valid molecular model of biological structures. The first model that incorporated proteins was proposed by Danielli and Davson, and assumed that the bilayer was made up entirely of lipids and that proteins covered the two polar surfaces [1]. Some 40 years later, the fluid mosaic model of the cell membrane proposed by Singer and Nicolson [2] was a conceptual breakthrough. Amphipathic membrane proteins were recognized to reside within, and even span, the whole bilayer that was depicted as a dynamic structure, the components of which are laterally mobile. However, the view that the lipids in the bilayer mainly serve as a homogeneous solvent for proteins [2] has been proven to be too simplistic. Lipids are not only distributed asymmetrically between the two leaflets of the bilayer, but also within the leaflet they are heterogeneously arranged [3]. This chapter will recapitulate the history and recent advances in membrane biology including the lipid raft concept, and then summarize current views on the functions of rafts and caveolae in membrane traffic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

15241u001..1-26 .. Seite1

For many years there was little discussion of or activity to develop new energetic materials for military applications. However, since the end of the Cold War there have been significant new activities in such materials. Particularly in the last 10 years, a number of new synthesized energetic materials have been reported and generated much discussion. Some of the most interesting newly develope...

متن کامل

miR‐203a‐3p.1 targets IL‐24 to modulate hepatocellular carcinoma cell growth and metastasis

Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death. Cytokines, including interleukin 24 (IL-24), play an important role in HCC. IL-24 inhibits HCC metastasis but the molecular mechanism by which this occurs is still unknown. MicroRNAs (miRNAs) are regulators of cancers including hepatocellular carcinoma (HCC). However, the role that miRNAs play in the regula...

متن کامل

British Association for Behavioural and Cognitive Psychotherapies

s 21st-23rd July 2010 | University of Manchester www.babcp.com Charity No 1098704 manchester_26_06-10_abstracts 24/6/10 19:01 Page 1 British Associati n for Behavioural and Cognitive Psyc otherapies 38th A nual Conference Abstracts 21st-23rd July 2 10 | University of Manchester www.babcp.com Charity No 1098704 manchester_26_06-10_abstracts 24/6/10 19:01 Page 1 manchester_26_06-10_abstracts 24/6...

متن کامل

MicroRNA-24 Regulates Osteogenic Differentiation via Targeting T-Cell Factor-1

MicroRNAs (miRNAs) have been reported to have diverse biological roles in regulating many biological processes, including osteogenic differentiation. In the present study, we identified that miR-24 was a critical regulator during osteogenic differentiation. We found that overexpression of miR-24 significantly inhibited osteogenic differentiation, which decreased alkaline phosphatase activity, m...

متن کامل

Parathyroid hormone inhibits 25-hydroxyvitamin D3-24-hydroxylase mRNA expression stimulated by 1 alpha,25-dihydroxyvitamin D3 in rat kidney but not in intestine.

Using a cDNA probe for rat renal 24-hydroxylase, expression of its mRNA was compared in the rat kidney and intestine. Vitamin D-deficient rats received a single injection of 1 alpha,25-dihydroxyvitamin D3. Expression of 24-hydroxylase mRNA was first detected in the kidney at 3-h post-injection and increased thereafter. Similarly, 24-hydroxylase mRNA was expressed in the intestine after 1 alpha,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005