Imbalanced Kynurenine Pathway in Schizophrenia
نویسندگان
چکیده
Several studies suggest a role for kynurenic acid (KYNA) in the pathophysiology of schizophrenia. It has been proposed that increased brain KYNA levels in schizophrenia result from a pathological shift in the kynurenine pathway toward enhanced KYNA formation, away from the other branch of the pathway leading to quinolinic acid (QUIN). Here we investigate the levels of QUIN in cerebrospinal fluid (CSF) of patients with schizophrenia and healthy controls, and relate those to CSF levels of KYNA and other kynurenine metabolites from the same individuals. CSF QUIN levels from stable outpatients treated with olanzapine (n = 22) and those of controls (n = 26) were analyzed using liquid chromatography-mass spectrometry. No difference in CSF QUIN levels between patients and controls was observed (20.6 ± 1.5 nM vs. 18.2 ± 1.1 nM, P = 0.36). CSF QUIN was positively correlated to CSF kynurenine and CSF KYNA in patients but not in controls. The CSF QUIN/KYNA ratio was lower in patients than in controls (P = 0.027). In summary, the present study offers support for an over-activated and imbalanced kynurenine pathway, favoring the production of KYNA over QUIN in patients with schizophrenia.
منابع مشابه
Impact of different antipsychotics on cytokines and tryptophan metabolites in stimulated cultures from patients with schizophrenia.
BACKGROUND An imbalance of tryptophan metabolites plays a role in the pathophysiology of schizophrenia. Also cytokines seem to be involved and are able to enhance the tryptophan metabolism. In this study the impact of cytokines, tryptophan metabolites and antipsychotics was evaluated in schizophrenic patients/ healthy controls and correlated with the psychopathology of schizophrenia. SUBJECTS...
متن کاملP 78: The Role of Kynurenine Pathway in Suicidal Behavior and Depression
According to global statistics, over 80,000 deaths occur by suicide annually. Up to 90% of complete suicides are based on psychiatric disorders specifically major depressive disorder (MDD) and bipolar disorder. Furthermore high levels of inflammation have been indicated in suicidal patients in both central nervous system and the peripheral blood. Two biological mechanisms that play a key role i...
متن کاملCortical kynurenine pathway metabolism: a novel target for cognitive enhancement in Schizophrenia.
The brain concentration of kynurenic acid (KYNA), a metabolite of the kynurenine pathway of tryptophan degradation and antagonist at both the glycine coagonist site of the N-methyl-D-aspartic acid receptor (NMDAR) and the alpha7 nicotinic acetylcholine receptor (alpha7nAChR), is elevated in the prefrontal cortex (PFC) of individuals with schizophrenia. This increase may be clinically relevant b...
متن کاملSCHIZOPHRENIA IN TRANSLATION Cortical Kynurenine Pathway Metabolism: A Novel Target for Cognitive Enhancement in Schizophrenia
The brain concentration of kynurenic acid (KYNA), a metabolite of the kynurenine pathway of tryptophan degradation and antagonist at both the glycine coagonist site of the N-methyl-D-aspartic acid receptor (NMDAR) and the a7 nicotinic acetylcholine receptor (a7nAChR), is elevated in the prefrontal cortex (PFC) of individuals with schizophrenia. This increase may be clinically relevant because h...
متن کاملBiochemical identification and crystal structure of kynurenine formamidase from Drosophila melanogaster.
KFase (kynurenine formamidase), also known as arylformamidase and formylkynurenine formamidase, efficiently catalyses the hydrolysis of NFK (N-formyl-L-kynurenine) to kynurenine. KFase is the second enzyme in the kynurenine pathway of tryptophan metabolism. A number of intermediates formed in the kynurenine pathway are biologically active and implicated in an assortment of medical conditions, i...
متن کامل