Characterization of biphasic modulation of spinal nociceptive transmission by neurotensin in the rat rostral ventromedial medulla.
نویسندگان
چکیده
Modulation of spinal nociceptive transmission by neurotensin microinjected in the rostral ventromedial medulla (RVM) was examined in anesthetized, paralyzed rats. Forty-three spinal dorsal horn neurons in the L3-L5 spinal segments responding to mechanical and noxious thermal stimulation (50 degrees C) of the plantar surface of the ipsilateral hind foot were studied. Spinal units were classified as either wide dynamic range or nociceptive specific and were located in spinal laminae I-V. Microinjection of neurotensin (0.03 pmol/0.2 microl) into the RVM produced a significant facilitation (135% of control) of spinal unit responses to noxious thermal stimulation (50 degrees C) that lasted approximately 12 min. In contrast, injection of greater doses of neurotensin (300 or 3,000 pmol) produced an inhibition of spinal unit responses to noxious heat (51.7 and 10.6% of control, respectively) that had a longer duration (60-120 min). The effects of neurotensin on wide-dynamic-range and nociceptive-specific neuron responses to noxious heat were qualitatively and quantitatively similar. Spinal unit responses to graded heating of the skin (42-50 degrees C) were completely inhibited after microinjection of 3,000 pmol of neurotensin into the RVM. Injection of a lesser dose of neurotensin (300 pmol), however, resulted in a partial inhibition of spinal unit responses and significantly reduced the slope of the stimulus-response function to graded heating of the skin. Transection of either the ipsilateral or contralateral dorsolateral funiculus (DLF) significantly reduced the inhibition of spinal nociceptive transmission produced by neurotensin (3,000 pmol) in the RVM, whereas bilateral transection of the DLFs completely blocked the effect. In contrast, bilateral transection of the DLFs had no effect on facilitation of spinal nociception by neurotensin (0.03 pmol) in the RVM. The inhibition of spinal nociceptive transmission by neurotensin (3,000 pmol) in the RVM was completely blocked by injection of the nonpeptide neurotensin receptor antagonist SR48692 (30 fmol) into the RVM 10 min before neurotensin. To confirm a specific block of neurotensin-receptor-mediated effects by the antagonist, a subsequent injection of L-glutamate into the RVM was performed. L-Glutamate (100 nmol) was found to inhibit the nociceptive responses of those spinal units whose responses were no longer inhibited by neurotensin. In contrast, injection of SR48692 (30 fmol) into the RVM failed to block the facilitation of spinal unit responses to noxious heat produced by a subsequent injection of neurotensin (0.03 pmol) into the same site. The present series of experiments demonstrate a specific role for neurotensin in the RVM in the modulation of spinal nociceptive transmission, because the peptide was found to both facilitate and inhibit spinal neuron responses to noxious thermal stimulation. Additionally, the facilitatory and inhibitory effects of neurotensin appear to occur via interaction with multiple neurotensin receptors in the RVM that activate independent systems that descend in the ventrolateral funiculi and DLFs, respectively. The results from these experiments are consistent with prior studies demonstrating that the RVM both facilitates and inhibits spinal nociceptive transmission, and they complement previous work showing that neurotensin in the RVM modulates spinal nociceptive behavioral responses.
منابع مشابه
Administration of orexin receptor 1 antagonist into the rostral ventromedial medulla increased swim stress-induced antinociception in rat
Objective(s): Intracerebroventricular injection of orexin-A (hypocretin-1) antagonist has been shown to inhibit stress-induced analgesia. However the locations of central sites that may mediate these effects have not been totally demonstrated. This study was performed to investigate the role of rostral ventromedial medulla (RVM) orexin receptor 1 in stress-induced analgesia (SIA). Materials and...
متن کاملEffect of transient inactivation of rostral ventromedial medulla on swim stress induced analgesia in formalin test in rats
Introduction: Despite significant progress in understanding pain control mechanism, there are numerous questions about central nervous mechanisms underlying stress-induced analgesia. The rostral ventromedial medulla (RVM) in the brainstem integrates a variety of functions, including pain modulation and pain perception. In the present study, we investigated the effect of temporary inactivatio...
متن کاملPermanent lesion in rostral ventromedial medulla potentiates swim stress-induced analgesia in formalin test
Objective(s): There are many reports about the role of rostral ventromedial medulla (RVM) in modulating stress-induced analgesia (SIA). In the previous study we demonstrated that temporal inactivation of RVM by lidocaine potentiated stress-induced analgesia. In this study, we investigated the effect of permanent lesion of the RVM on SIA by using formalin test as a model of acute inflammatory pa...
متن کاملSeparate populations of neurons in the rostral ventromedial medulla project to the spinal cord and to the dorsolateral pons in the rat.
Activation of neurons in the rostral ventromedial medulla (RVM) directly modulates spinal nociceptive transmission by projections to the spinal cord dorsal horn and indirectly by projections to neurons in the dorsolateral pons (DLP) that project to the spinal cord dorsal horn. However, it is not known whether the same neurons in the RVM produce both direct and indirect modulation of nociception...
متن کاملAttenuation of hyperalgesia responses via the modulation of 5-hydroxytryptamine signalings in the rostral ventromedial medulla and spinal cord in a 6-hydroxydopamine-induced rat model of Parkinson’s disease
Background Although pain is one of the most distressing non-motor symptoms among patients with Parkinson's disease, the underlying mechanisms of pain in Parkinson's disease remain elusive. The aim of the present study was to investigate the role of serotonin (5-hydroxytryptamine) in the rostral ventromedial medulla (RVM) and spinal cord in pain sensory abnormalities in a 6-hydroxydopamine-treat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 78 3 شماره
صفحات -
تاریخ انتشار 1997