Learning a Visual State Representation for Generative Adversarial Imitation Learning

نویسندگان

  • Boris Ivanovic
  • Yuke Zhu
  • Animesh Garg
  • Silvio Savarese
چکیده

Imitation learning is a branch of reinforcement learning that aims to train an agent to imitate an expert’s behaviour, with no explicit reward signal or knowledge of the world. Generative Adversarial Imitation Learning (GAIL) is a recent model that performs this very well, in a data-efficient manner. However, it has only been used with low-level, low-dimensional state information, with few results on visual input. This work aims to expand the applicability of GAIL by enabling it to use visual input. To do this, we add a convolutional neural network to GAIL that learns a vector representation of images. We train the entire model on randomly-generated 2D “Grid World” environments with optimal experts. Further, we uncover that GAIL succumbs to the “DAgger problem” and analyze ways to overcome it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model-based Adversarial Imitation Learning

Generative adversarial learning is a popular new approach to training generative models which has been proven successful for other related problems as well. The general idea is to maintain an oracle D that discriminates between the expert’s data distribution and that of the generative model G. The generative model is trained to capture the expert’s distribution by maximizing the probability of ...

متن کامل

End-to-End Differentiable Adversarial Imitation Learning

Generative Adversarial Networks (GANs) have been successfully applied to the problem of policy imitation in a model-free setup. However, the computation graph of GANs, that include a stochastic policy as the generative model, is no longer differentiable end-to-end, which requires the use of high-variance gradient estimation. In this paper, we introduce the Modelbased Generative Adversarial Imit...

متن کامل

Generative Adversarial Imitation Learning

Consider learning a policy from example expert behavior, without interaction with the expert or access to reinforcement signal. One approach is to recover the expert’s cost function with inverse reinforcement learning, then extract a policy from that cost function with reinforcement learning. This approach is indirect and can be slow. We propose a new general framework for directly extracting a...

متن کامل

Unsupervised Learning for Cell-level Visual Representation in Histopathology Images with Generative Adversarial Networks

The visual attributes of cells, such as the nuclear morphology and chromatin openness, are critical for histopathology image analysis. By learning cell-level visual representation, we can obtain a rich mix of features that are highly reusable for various tasks, such as cell-level classification, nuclei segmentation, and cell counting. In this paper, we propose a unified generative adversarial n...

متن کامل

Learning human behaviors from motion capture by adversarial imitation

Rapid progress in deep reinforcement learning has made it increasingly feasible to train controllers for high-dimensional humanoid bodies. However, methods that use pure reinforcement learning with simple reward functions tend to produce non-humanlike and overly stereotyped movement behaviors. In this work, we extend generative adversarial imitation learning to enable training of generic neural...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017