Afriat from MaxMin

نویسندگان

  • John D. Geanakoplos
  • J. D. Geanakoplos
چکیده

Afriat’s original method of proof is restored by using the minmax theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A smooth variant of the Afriat- Varian theorem

We present a simple geometric construction for smoothing polyhedral utility functions.

متن کامل

A Geometric Measure for the Violation of Utility Maximization

Revealed Preference methods offer a nonparametric test for whether a set of observations on a consumer can be rationalized by a utility function. If a consumer is inconsistent with the Generalized Axiom of Revealed Preference, having an idea of how severe this violation of utility maximization is can be useful. One widely used measure is the Afriat efficiency index. We propose a new measure bas...

متن کامل

A Theory of Convergence Order of Maxmin Rate Allocation and an Optimal Protocol

The problem of allocating maxmin rates with minimum rate constraints for connection-oriented networks is considered. This paper proves that the convergence of maxmin rate allocation satisfies a partial ordering in the bottleneck links. This partial ordering leads to a tighter lower bound for the convergence time for any maxmin protocol. An optimally fast maxmin rate allocation protocol called t...

متن کامل

An Afriat Theorem for the collective model of household consumption

An Afriat Theorem for the Collective Model of Household Consumption We provide a nonparametric ‘revealed preference’ characterization of rational household behavior in terms of the collective consumption model, while accounting for general (possibly non-convex) individual preferences. We establish a Collective Axiom of Revealed Preference (CARP), which provides a necessary and sufficient condit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013